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Lecture 1: Electric charge and electric field 

Electric Charge and Electric Field 
(Chapter 21 in textbook) 

 

 Electric Charge and the Structure of Matter 

The structure of atoms can be described in terms of three particles:  

 The negatively charged electron 

𝑴𝒂𝒔𝒔 = 𝟗. 𝟏𝟎𝟗 × 𝟏𝟎−𝟑𝟏𝒌𝒈 
 The positively charged proton 

𝑴𝒂𝒔𝒔 = 𝟏. 𝟔𝟕𝟑 × 𝟏𝟎−𝟐𝟕𝒌𝒈  
 The uncharged neutron  

𝑴𝒂𝒔𝒔 = 𝟏. 𝟔𝟕𝟓 × 𝟏𝟎−𝟐𝟕𝒌𝒈 

 Charge Carried by Electrons and Protons 

A model of an atom with negative electrons orbiting its positive nucleus. 

The nucleus is positive due to the presence of positively charged protons.  

Nearly all charge in nature is due to electrons and protons, which are two of the 

three building blocks of most matter. (The third is the neutron, which is neutral, 

carrying no charge.)  

The charges of electrons and protons are identical in magnitude but opposite in 

sign. The magnitude of this basic charge is  

 

𝑞 = 1.6 × 10−19 𝐶𝑜𝑢𝑙𝑜𝑚𝑏 (𝐶) 

 

 Conductors and insulators 

Materials that allow easy passage of charges are called conductors. (e.g. most metals ) 

Materials that resist electronic flow are called insulators. (e.g. glass, wood). 

 

Coulomb’s Law 
 

The magnitude of the electric force between two point charges is directly proportional to the product of 

the charges and inversely proportional to the square of the distance between them. 

𝑭 =
𝟏

𝟒𝝅𝜺𝟎

|𝒒𝟏𝒒𝟐|

𝒓𝟐
 

Units: 𝒒𝟏 and 𝒒𝟐 are in coulombs (C); 𝑭 is in newton (N). 

Notes: 

 The direction of 𝐹 is determined using the fact that like 

charges repel and unlike charges attract. 

 𝑟 is the distance between the two charges. 

 the permittivity of free space 𝜀0 =  8.85 × 10−12 𝐹/𝑚:  

 
𝟏

𝟒𝝅𝜺𝟎
= 𝟗 × 𝟏𝟎𝟗 𝑁𝑚2 𝐶2⁄  

 

The force is along the line connecting the charges, and 

is attractive if the charges are opposite, and repulsive if they are the 

same. 
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Example 1 : Forces between two point charges 

Two point charges  𝑞1 =  25 𝑛𝐶  and  𝑞2 =  − 75 𝑛𝐶 

are separated by a distance of 3.0 𝑐𝑚.  Find the magnitude and direction of the electric force that 𝑞1 exerts on 

𝑞2.   

Solution: 

𝐹 =
1

4𝜋𝜀0

|𝑞1𝑞2|

𝑟2
 

    = 9 × 109   
(25×10−9)(−75×10−9)

3×10−2 = 0.0187 𝑁 

The force is attractive 

 

Example 2: Compare the strength of the electrostatic force between the electron and proton in a hydrogen atom 

with the corresponding gravitational force between the two. Remember that a hydrogen atom consists of a 

single electron in orbit around a proton. The electron is pictured as moving around the proton in a circular orbit 

with radius 𝑟 =  5.29 × 10−11𝑚.   
What is the ratio of the magnitude of the electric force between the electron and proton to the magnitude of the 

gravitational attraction between them?  

𝑚𝑒 = 9.1 × 10−31𝑘𝑔 

𝑚𝑝 = 1.67 × 10−27𝑘𝑔 

The gravitational constant is 

𝐺 = 6.67 × 10−11𝑁𝑚2/𝑘𝑔2 
 

Solution: The electric force is given by Coulomb’s law and the gravitational force by Newton’s law of 

gravitation. 

Each particle has charge of magnitude  𝑒 = 1.6 × 10−19𝐶. 

𝑭𝒆 =
𝟏

𝟒𝝅𝜺𝟎

𝒒𝟏𝒒𝟐

𝒓𝟐
= 𝒌

𝒆𝟐

𝒓𝟐
 

𝑭𝒈 = 𝑮
𝒎𝒆𝒎𝒑

𝒓𝟐
 

The ratio of the two forces is 

𝐹𝑒

𝐹𝑔
=

1
4𝜋𝜀0

𝑒2

𝑟2

𝐺
𝑚𝑒𝑚𝑝

𝑟2

=
𝑘𝑒2

𝐺𝑚𝑒𝑚𝑝
=

9 × 109 × (1.6 × 10−19)2

6.67 × 10−11 × 9.1 × 10−31 × 1.67 × 10−27
 

= 2.27 × 1039 

Example 3: Vector addition (Superposition) of electric forces on a line 
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Solution:  

 

 

 

 

 

 

 

 

Example 3: Vector addition (Superposition) of electric forces in a plane 

 

 

 

 

 

 

 

Solution: 

 

 

 

 

 

 

 The Electric Field 

Definition of the electric field: electric force per unit charge. 𝑬 =
𝑭

𝑞0
  𝑡ℎ𝑒 𝑆𝐼 𝑢𝑛𝑖𝑡 𝑖𝑠 𝑁/𝐶  

Here, q
0
 is a “test charge” it serves to allow the electric force to be measured, but is not large enough to create a 

significant force on any other charges. 

 

 If we know the electric field, we can calculate the force on any charge:   𝑭 = 𝑞𝑬 

 The direction of the force depends on the sign of the charge: in the direction of the field for a positive 

charge, opposite to it for a negative one. 

 

𝐹3 = (−112𝜇𝑁)𝑖 + (84𝜇𝑁) 𝑖 = (−28𝜇𝑁) 𝑖 

In the same way we can show that 𝑭𝟐 𝒐𝒏 𝟑 = 84 𝜇𝑁.  

Thus we have: 

𝐹1 𝑜𝑛 3 = −112 𝑖   𝑎𝑛𝑑 𝐹2 𝑜𝑛 3 = 84 𝑖  

Therefore, the net force on 𝑞3 is 
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 Superposition principle for electric fields: 

Just as electric forces can be superposed, electric fields can as well. 

  

 
 
 
If we place a small test charge 𝑞0 at the field point 𝑃, at a distance 𝑟 from the source point, the magnitude of the 

force is given by Coulomb’s law 

 

 

 

the magnitude of the electric field at P is 

𝑬 =
𝑭𝟎

𝑞0
=

1
4𝜋𝜀0

𝑞0𝑞
𝑟2  

𝑞0
=

1

4𝜋𝜀0

𝑞

𝑟2
 

Example 1: What is the magnitude of the electric field at a field point 2.0 m from a point charge 𝑞 =  4.0 𝑛𝐶 

Solution: 

 
Example 2: When the terminals of a battery are connected to two parallel conducting plates with a small gap 

between them, the resulting charges on the plates produce a nearly uniform electric field between the plates. If 

the plates are 1 𝑐𝑚 apart and are connected to a 100 𝑣𝑜𝑙𝑡 battery. The field is vertically upward and has 

magnitude 𝐸 = 1 × 104𝑁/𝐶.  

(a) If an electron ( 𝑞 = −1.6 × 10−19𝐶 𝑎𝑛𝑑 𝑚 = 9.1 × 10−31𝑘𝑔) is released from rest at the upper plate, what 

is its acceleration? 

(b) What speed and kinetic energy does it acquire while traveling 1 cm to the lower plate? 

(c) How long does it take to travel this distance? 

 

 

Solution: (a) Although E is upward (in the +y-

direction), F is downward (because the electron’s 

charge is negative) and so 𝐹𝑦 is negative. Because 𝐹𝑦 is 

constant, the electron’s acceleration is constant: 

∴  𝑎𝑦 =
𝐹𝑦

𝑚
=

𝑞𝐸

𝑚
=

−1.6 × 10−19 × 1 × 104

9.11 × 10−31

= −1.76 × 1015𝑚/𝑠2 
(b) The electron starts from rest, so its motion is in the y-direction only (the direction of the acceleration). We 

can find the electron’s speed at any position y using the constant-acceleration 

𝑣2 = 𝑣0
2 + 2𝑎𝑦(𝑦 − 𝑦0) = 0 + 2(−1.76 × 1015)(−1 × 10−2 − 0) 

∴ |𝑣| = √0 + 2(−1.76 × 1015)(−1 × 10−2) = 5.9 × 106𝑚/𝑠 

 

 

𝐹0 =
1

4𝜋𝜀0

𝑞0𝑞

𝑟2
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The velocity is downward, so 𝑣𝑦 = −5.9 × 106𝑚/𝑠  

The electron’s kinetic energy is 

𝑘 =
1

2
𝑚𝑣2 =

1

2
(9.11 × 10−31)(5.9 × 106)2 = 1.6 × 10−17𝐽 

(c) To calculate the time use 𝑣𝑦 = 𝑣0 + 𝑎𝑦𝑡 

                              𝑡 =
𝑣𝑦−𝑣0

𝑎𝑦
=

−5.9×106−0

−1.76×1015
= 3.4 × 10−9𝑠 = 3.4 𝑛𝑠  

 

 Field of an electric dipole 

Example3: Point charges 𝑞1 and 𝑞2 are 0.1 𝑚 apart. (Such pairs of point charges with equal magnitude and 

opposite sign are called electric dipoles.) Compute the electric field caused by 𝑞1 ,the field caused by 𝑞2 and the 

total field (a) at point 𝑎 (b) at point 𝑏, and (c) at point 𝑐 

Solution: 
We must find the total electric field at various points due to two point charges. We use the principle of 

superposition: 𝑬 = 𝑬𝟏 + 𝑬𝟐. The field points 𝑎, 𝑏. 𝑎𝑛𝑑 𝑐 are shown in the figure. 

EXECUTE: At each field point, E depends on 𝑬𝟏 and 𝑬𝟐there; we first calculate the magnitudes 𝑬𝟏and 𝑬𝟐 at 

each field point. At 𝑎 the magnitude of the field 𝐸1𝑎 caused by 𝑞1 is 

 

 
 

the directions of 𝑬𝟏and 𝑬𝟐 at c. Both vectors have the same x-component: 

 
 

 

 Field of a ring of charge 
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Example 4: Charge is uniformly distributed around a conducting ring of radius. Find the electric field at a 

point P on the ring axis at a distance x from its center. 

Solution: To calculate 𝐸𝑥, divide the ring into small segments 𝑑𝑠, so the electric field at P due to the segment ds 

is 

 𝑑𝐸 =
1

4𝜋𝜀0

𝑑𝑄

𝑟2
 

The x-component of this field is 

 𝑑𝐸𝑥 = 𝑑𝐸𝑐𝑜𝑠𝛼. 
The charge on the segment 𝑑𝑠 is  

𝑑𝑄 = 𝜆 𝑑𝑠,    

where 𝜆 is the linear charge density 

    𝜆 = 𝑄/2𝜋𝑎 

 

𝑟2 = 𝑥2 + 𝑎2 

cos 𝛼 =
𝑥

𝑟
=

𝑥

√𝑥2 + 𝑎2
 

∴ 𝑑𝐸𝑥 =
1

4𝜋𝜀0

𝑑𝑄

𝑥2 + 𝑎2

𝑥

√𝑥2 + 𝑎2
=

1

4𝜋𝜀0

𝑥𝜆 𝑑𝑠

(𝑥2 + 𝑎2)3/2
 

To find 𝐸𝑥 we integrate this expression over the entire ring circumference that is, for s from 0 to 2𝜋𝑎. 

𝐸𝑥 =
1

4𝜋𝜀0

𝜆𝑥 

(𝑥2 + 𝑎2)3/2
∫ 𝑑𝑠

2𝜋𝑎

0

 

=
1

4𝜋𝜀0

𝜆𝑥 

(𝑥2 + 𝑎2)
3
2

(2𝜋𝑎) =
1

4𝜋𝜀0

𝑥(
𝑄

2𝜋𝑎) 

(𝑥2 + 𝑎2)3/2
(2𝜋𝑎) 

=
1

4𝜋𝜀0

𝑄𝑥 

(𝑥2+𝑎2)
3
2

                          in the +𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. 

 

 Field of a uniformly charged disk 

Example 5: A non-conducting disk of radius 𝑅 has a uniform positive surface charge density 

𝜎 . Find the electric field at a point along the axis of the disk a distance 𝑥 from its center. Assume that 𝑥 is 

positive.  

Solution: the disk is a set of concentric rings. A typical ring has a 

charge  , inner radius 𝑟, and outer radius 𝑟 + 𝑑𝑟.  
𝑑𝐴 = 2𝜋𝑟𝑑𝑟 

The charge per unit surface area is 𝜎 =
𝑑𝑄

𝑑𝐴
, so the charge of the 

ring is  

𝑑𝑄 = 𝜎 𝑑𝐴 = 2𝜋𝜎𝑟𝑑𝑟 

The field component 𝑑𝐸𝑥 at point P due to this ring (Similar to example 4 and replacing the ring radius 𝑎 with 

𝑟.) is 

𝑑𝐸𝑥 =
1

4𝜋𝜀0

𝑑𝑄

𝑥2 + 𝑎2

𝑥

√𝑥2 + 𝑟2
=

1

4𝜋𝜀0

𝑥𝜎 𝑑𝐴

(𝑥2 + 𝑟2)3/2
 

To find the total field due to all the rings, we integrate 𝑑𝐸𝑥 over 𝑟, from 𝑟 = 0 𝑡𝑜 𝑟 = 𝑅 
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𝐸𝑥 = ∫
1

4𝜋𝜀0

𝑥(2𝜋𝜎𝑟𝑑𝑟)

(𝑥2 + 𝑟2)3/2
=

𝜎𝑥

4𝜀0
∫

2𝑟𝑑𝑟

(𝑥2 + 𝑟2)3/2

𝑅

0

𝑅

0

 

Let 𝑡 = 𝑥2 + 𝑟2, so 𝑑𝑡 = 2𝑟𝑑𝑟, the result is 

𝐸𝑥 =
𝜎𝑥

4𝜀0
[−

1

√𝑥2 + 𝑅2
+

1

𝑥
] 

=
𝜎

2𝜀0
[1 −

1

√(𝑅2 𝑥2⁄ ) + 1
] 

Note that if the disk is very large (or we are very close to it), so that 

 𝑅 ≫ 𝑥 , the term 
1

√(𝑅2 𝑥2⁄ )+1
 will be much less than 1. then the field becomes 

𝐸 =
𝜎

2𝜀0
 

This result shows that for an infinite plane sheet of charge the field is independent of the distance from the 

sheet. 

The direction of the field is perpendicularly away from the sheet. 

 Field of two oppositely charged infinite sheets 

Example 6: Two infinite plane sheets with uniform 

surface charge densities and are placed parallel to each 

other with separation. Find the electric field between the 

sheets, above the upper sheet, and below the lower sheet. 

 

 

 

Solution: both 𝑬𝟏 and 𝑬𝟐 have the same magnitude at all points, independent of distance from either sheet. 

𝐸1 = 𝐸2 =
𝜎

2𝜀0
 

𝐸1 is everywhere directed away from sheet 1( + charge), and 𝐸2is everywhere directed toward sheet 2 (- 

charge). 

Between the sheets, 𝐸1and 𝐸2 reinforce each other; above the 

upper sheet and below the lower sheet, they cancel each other. 

Thus the total field is  

 

 

 Electric Dipoles 

An electric dipole consists of two charges Q, equal in 

magnitude and opposite in sign, separated by a distance 𝑙  . 

The dipole moment, 𝐩 = 𝑄𝑙, points from the negative to the positive charge. 

An electric dipole in a uniform electric field will experience no net force,  

but it will, in general, experience a torque: 

 

 

 

 The torque is maximum when and 𝒑 and 𝑬 are perpendicular and is zero 

when they are parallel or antiparallel. 

 The torque always tends to turn 𝒑 to line up with 𝑬. 
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 The position of stable equilibrium occurs when 𝜑 = 0 ( p and E are parallel) and when 𝜑 = 𝜋 ( p 

and E are antiparallel ) is a position of unstable equilibrium.  

 Potential Energy of an Electric Dipole 

When a dipole changes direction in an electric field, the electric-field torque does work on it, with a 

corresponding change in potential energy.  

The work done by a torque during an infinitesimal displacement is 𝑑𝜃 is given by 

𝑑𝑊 = 𝜏 𝑑𝜃 = −𝑝𝐸𝑠𝑖𝑛𝜃 

In a finite displacement from 𝜃1to 𝜃2the total work done on the dipole is    

𝑊 = ∫ (−𝑝𝐸𝑠𝑖𝑛𝜃) 𝑑𝜃

𝜃2

𝜃1

 

𝑊 = 𝑝𝐸𝑐𝑜𝑠𝜃2 − pEcos𝜃1 

The work is the negative of the change of potential energy 

𝑊 = 𝑈1 − 𝑈2 
So a suitable definition of potential energy for this system is 

𝑈(𝜃) = −𝑝𝐸𝑐𝑜𝑠𝜃 

Since 𝑝𝐸𝑐𝑜𝑠𝜃 = 𝑝 ∙ 𝐸    (scalar product) 

∴    𝑈 = −𝑝 ∙ 𝐸    

 The potential energy has its minimum (most negative) value 𝑈 = −𝑝𝐸 at the stable equilibrium 

position, where  𝜃 = 0  and 𝒑 is parallel to 𝑬  

 The potential energy is maximum when 𝜃 = 𝜋 and p is antiparallel to E then 𝑈 = +𝑝𝐸  

 A 𝜃 =  𝜋 2⁄  t where 𝒑 is perpendicular to 𝑬,  𝑼 = 𝟎 

 

Example: the figure shows an electric dipole in a uniform electric 

field of magnitude 5 × 105 𝑁/𝐶 that is directed parallel to the 

plane of the figure. The charges are  ∓1.6 × 10−19𝐶; both lie in 

the plane and are separated by 0.125 𝑚𝑚.  

Find: 

(a) The net force exerted by the field on the dipole. 

(b) The magnitude and direction of the dipole moment. 

(c) The magnitude and direction of the torque. 

(d) The potential energy of the system in the position shown.     

Solution: 

(a) The field is uniform, so the forces on the two charges are equal and opposite. Hence the total force 

on the dipole is zero. 

(b)  the magnitude of the electric dipole moment is 

𝑝 = 𝑞𝑑 = 1.6 × 10−19 × 0.125 × 10−3 = 2 × 10−29𝐶. 𝑚 

The direction of  𝒑  is from negative to positive 

charge, 1450 clockwise from the direction of  

the electric field. 

(c) The magnitude of the torque is 

𝜏 = 𝑝𝐸𝑠𝑖𝑛𝜃 = 2 × 10−29 × 5 × 105 × sin 1450   

                                 = 5.7 × 10−24𝑁. 𝑚 

The direction of the torque 𝝉 = 𝒑 × 𝑬 is out of the page ( right hand rule).this corresponds to a 

counterclockwise torque that tends to align 𝒑 with 𝑬. 

(d) The potential energy is 
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𝑈 = −𝑝𝐸 𝑐𝑜𝑠𝜃 = −2 × 10−29 × 5 × 105 × 𝑐𝑜𝑠1450   = 8.2 × 10−24 𝐽 

 

 
 
 
 

Lecture 2: Gauss’s Law     

Gauss’s Law 
Gauss’s law is an alternative to Coulomb’s law.  

It provides a different way to express the relationship between electric charge and electric field. 

 

Definition: The total electric flux through any closed surface is proportional to the total electric charge inside 
the surface. 

 

  Calculating the electric flux

The Electric Flux (𝚽𝐸) is defined as the product of the magnitude of the electric field E 

and the surface area, A, perpendicular to the field. 

 

 For a uniform electric field:  𝚽𝐸 = 𝐸𝐴   

 Flux Units: 𝑵 · 𝒎𝟐/𝑪 
          

• Since the electric flux 𝜱𝑬 through a cross 

sectional area A is proportional to the 

total number of field lines crossing the 

area.  

• If the area is flat but not perpendicular to 

the field then fewer field lines pass 

through it, then 

𝚽𝑬 = 𝑬𝑨𝒄𝒐𝒔𝝋 = 𝑬 ∙ 𝑨 = 𝑬⏊𝑨 

 Φ
E
 is a maximum when the surface is perpendicular to the field: θ = 0° 

 Φ
E
 is zero when the surface is parallel to the field: θ = 90° 

 If the field varies over the surface, Φ
E
 = EA cosθ is valid for only a small element of the area. 

 For a Non-uniform Electric Field: 

What happens if the electric field 𝑬 isn’t uniform but varies from point to point over the area 𝑨? Or 

what if 𝑨 is part of a curved surface? Then we divide 𝑨 into many small elements 𝑑𝑨. Then we get 

the general definition of flux. 

 
We call this integral the surface integral of the component 𝐸⏊over the area, or the surface integral  

of  𝑬 ∙ 𝒅𝑨. 

 

Example 1: A disk of radius 0.10 m is oriented with its normal unit vector 

𝒏 at 300to a uniform electric field of magnitude 2 × 103𝑛/𝐶. (Since this isn’t 
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a closed surface, it has no “inside” or “outside.” That’s why we have to specify the direction of in the figure.)  

(a) What is the electric flux through the disk?  

(b) What is the flux through the disk if it is turned so that 𝒏 is perpendicular to E? 

(c) What is the flux through the disk if 𝒏 is parallel to E? 

Solution:  

 (a) The area 𝐴 = 𝜋(0.1)2 = 0.0314 𝑚2 

           Φ
E
  = EA cosθ 

                       = 2 × 103 × 0.0314 cos(300) = 54 𝑁. 𝑚2/𝐶    

(b) The normal to the disk is now perpendicular to 𝐸, so         𝜑 = 900,  𝑎𝑛𝑑 cos 900 = 0  
∴ 𝐸 = 0 

(c) The normal to the disk is parallel to 𝐸, so 𝜑 = 0,  𝑎𝑛𝑑 cos 𝜑 = 1. 

    ∴ Φ
E

= 2 × 103 × 0.0314 × 1 = 63 𝑁.
𝑚2

𝐶
 

 

 Electric flux through a cube 
Example 2: An imaginary cubical surface of side L is in a region of uniform electric field E.  

Find the electric flux through each face of the cube and the total flux through the cube when  

(a) it is oriented with two of its faces perpendicular to E.  

(b) the cube is turned by an angle 𝜃 about a vertical axis. 

Solution: 

(a) The angle between 𝒏𝟏and 𝑬 is 180°, the angle between E and 𝒏𝟐 is 00, and the angle between E and each of 

the other four unit vectors is 90°. Each face of the cube has area 𝐿2so the fluxes through the faces are:  

𝜑𝐸1 = 𝐸 ∙ 𝐴1 = 𝐸𝐿2𝑐𝑜𝑠1800 = − 𝐸𝐿2 

𝜑𝐸2 = 𝐸 ∙ 𝐴2 = 𝐸𝐿2𝑐𝑜𝑠00 = + 𝐸𝐿2 

𝜑𝐸3 = 𝜑𝐸4 = 𝜑𝐸5 = 𝜑𝐸6 = 𝐸𝐿2𝑐𝑜𝑠900 =0 

The total flux through the cube is 

𝜑𝐸 = 𝜑𝐸1 + 𝜑𝐸2 + 𝜑𝐸3 + 𝜑𝐸4 + 𝜑𝐸5 + 𝜑𝐸6 

     = −𝐸𝐿2+ 𝐸𝐿2 + 0 + 0 + 0 + 0 = 0 

𝜑𝐸1 = 𝐸 ∙ 𝐴1 = 𝐸𝐿2𝑐𝑜𝑠(1800 − 𝜃) = − 𝐸𝐿2𝑐𝑜𝑠𝜃 

𝜑𝐸2 = 𝐸 ∙ 𝐴2 = 𝐸𝐿2𝑐𝑜𝑠𝜃 = + 𝐸𝐿2𝑐𝑜𝑠𝜃 

𝜑𝐸3 = 𝐸 ∙ 𝐴3 = 𝐸𝐿2𝑐𝑜𝑠(900 + 𝜃) = − 𝐸𝐿2𝑠𝑖𝑛𝜃 

𝜑𝐸4 = 𝐸 ∙ 𝐴4 = 𝐸𝐿2𝑐𝑜𝑠(900 − 𝜃) = + 𝐸𝐿2𝑠𝑖𝑛𝜃 
 
 
 
𝜑𝐸5 = 𝐸 ∙ 𝐴5 = 𝐸𝐿2𝑐𝑜𝑠900 = 0 

The total flux 

 𝜑𝐸 = 𝜑𝐸1 + 𝜑𝐸2 + 𝜑𝐸3+𝜑𝐸4+𝜑𝐸5 + 𝜑𝐸6 = 0,  

through the surface of the cube is again zero 

 Electric flux through a sphere 

Example: A point charge 𝑞 = +3 𝜇𝐶 is surrounded by an imaginary sphere of radius 𝑟 = 0.2 𝑚 centered on the 

charge. Find the resulting electric flux through the sphere.  

 

 

(b) The field 𝑬 is directed into faces 1 and 3, so the fluxes through them 

are negative; 𝑬  is directed out of faces 2 and 4, so the fluxes through 

them are positive. We find 
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 Point Charge Inside a Spherical Surface: 

Place a single positive point charge at the center of an imaginary spherical surface with radius 𝑅. The 

magnitude 𝐸 of the electric field at every point on the surface is given by 

𝐸 =
1

4𝜋𝜖0

𝑞

𝑅2
 

At each point on the surface, 𝑬 is perpendicular to the surface, and its magnitude is the same at every point. The 

total electric flux is 

Φ𝐸 = 𝐸𝐴 =
1

4𝜋𝜖0

𝑞

𝑅2
(4𝜋𝑅2) =

𝑞

𝜖0
 

The flux is independent of the radius R of the sphere. It depends only on the charge q 

enclosed by the sphere. 

In terms of field lines the Figure shows two spheres with radii 𝑅 and 2𝑅 centered on the 

point charge. Every field line that passes through the smaller sphere also passes through the 

larger sphere, so the total flux through each sphere is the same. 

  𝑅 → 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 𝑖𝑠 𝑑𝐴  

 2𝑅 → 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 𝑖𝑠 4𝑑𝐴 

 

Since  𝐸 = (
𝑞

4𝜋𝜖0
)   

1

𝑅2
 

Hence the electric flux is the same for both areas and is independent of the radius of the sphere. 

 Point Charge Inside a Nonspherical Surface: 

 Divide irregular surface into 𝑑𝐴 elements, compute electric flux for each (𝐸 𝑑𝐴 cos𝜑) and sum 

results by integrating. 

 Each 𝑑𝐴 projects onto a spherical surface element gives 

total electric flux through irregular surface = flux through 

sphere. 

 

Φ𝐸 = ∮ 𝑬 ∙ 𝒅𝑨 =
𝑞

𝜖0
,    the circle means that the integral is through a 

closed surface. This is valid for positive or negative charge.   

 If enclosed 𝒒 =  𝟎 , 𝒕𝒉𝒆𝒏  𝜱𝑬 = 𝟎 

 

 

 General form of Gauss’s law 
Suppose the surface encloses several charges. Let 𝑄𝑒𝑛𝑐𝑙 be the total charge enclosed by the surface 

𝐸 =
𝑞

4𝜋𝜖0𝑟2
 

∴ Φ𝐸 = 𝐸 ∫ 𝑑𝐴 = 𝐸𝐴 =
𝑞

4𝜋𝜖0𝑟2
× 4𝜋𝑟2 =

𝑞

𝜖0
=

3 × 10−6

8.85 × 10−12
 

= 3.4 × 105𝑁. 𝑚2/𝐶 

Solution: The electric flux Φ𝐸 = ∫ 𝐸𝑑𝐴, but the magnitude of the electric 

field 𝑬 is the same at every point on the surface of the sphere. 

  

The flux through any surface enclosing a single point charge is independent of the 

shape or size of the surface 
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 𝑄𝑒𝑛𝑐𝑙 = 𝑞1 + 𝑞2 + 𝑞3 + ⋯ 

Also let 𝑬 be the total field at the position of the surface area element 𝑑𝐴  

𝐸 = 𝐸1 + 𝐸2 + 𝐸3 + ⋯ 

and let 𝐸⏊be its component perpendicular to the plane of that element 𝑑𝐴. 

Then we can calculate the flux for each charge and its corresponding field and add the results. When we 

do, we obtain the general statement of Gauss’s law:  

Φ𝐸 = ∮ 𝑬 ∙ 𝒅𝑨 =
𝑄𝑒𝑛𝑐𝑙

𝜖0
 

Gauss’s law: The total electric flux through a closed surface is equal to the total (net) electric charge inside 

the surface, divided by 𝜖0 
We often refer to a closed surface used in Gauss’s law as a Gaussian surface. We can express Gauss’s 

law in the following equivalent forms:  

 
The various forms of the integral all express the same thing, the total electric flux through the Gaussian surface, 

in different terms.  

As an example, a spherical Gaussian surface of radius 𝑟 around a positive point charge +𝑞 The electric field 

points out of the Gaussian surface, so at every point on the surface 𝑬 is in the same direction as 𝑑𝐴, 𝜑 = 0, and 

𝐸⏊is equal to the field magnitude 𝐸 = 𝑞 4𝜋𝜖0⁄  . Since 𝐸 is the same at all points on the surface. Then  

Φ𝐸 = ∮ 𝐸⏊𝒅𝑨 = ∮ (
𝑞

4𝜋𝜖0𝑟2
) 𝑑𝐴 = (

𝑞

4𝜋𝜖0𝑟2
) ∮ 𝑑𝐴 = (

𝑞

4𝜋𝜖0𝑟2
) 𝐴 

 

              =(
𝑞

4𝜋𝜖0𝑟2) 4𝜋𝑟2 =
𝑞

𝜖0
 

The enclosed charge 𝑄𝑒𝑛𝑐𝑙 is just the charge +𝑞 so 

this agrees with Gauss’s law.  

 

 

If the Gaussian surface encloses a negative point 

charge, then 𝑬 points into the surface at each point in 

the direction opposite 𝑑𝐴, 𝜑 = 1800 and 𝐸⏊is equal 

to the negative of the field magnitude  𝐸⏊ = −𝐸 =  − (
|−𝑞|

4𝜋𝜖0𝑟2) = −q/4𝜋𝜖0𝑟2 

Φ𝐸 = ∮ 𝐸⏊𝒅𝑨 = ∮ (
−𝑞

4𝜋𝜖0𝑟2
) 𝑑𝐴 = (

−𝑞

4𝜋𝜖0𝑟2
) ∮ 𝑑𝐴 = (

−𝑞

4𝜋𝜖0𝑟2
) 𝐴 

                      =(
−𝑞

4𝜋𝜖0𝑟2) 4𝜋𝑟2 =
−𝑞

𝜖0
 

 

                                     
 

Lecture 3: Applications of Gauss’s Law     
 

Applications of Gauss’s Law 
 Gauss’s law is valid for any distribution of charges and for any closed surface.  

 Gauss’s law can be used in two ways.  

• If we know the charge distribution, and if it has enough symmetry to let us evaluate the integral 

in Gauss’s law, we can find the field. Or  
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• if we know the field, we can use Gauss’s law to find the charge distribution, such as charges on 

conducting surfaces. 

 

 When excess charge is placed on a solid conductor and is at rest, it resides 

entirely on the surface, not in the interior of the material. 

 

(By excess we mean charges other than the ions and free electrons that make up 

the neutral conductor.)  
 Field of a charged conducting sphere 

Example: We place a total positive charge 𝑞 on a solid 

conducting sphere with radius 𝑅 . Find the electric field at any 

point inside or outside the sphere. 

 

All the charge must be on the surface of the sphere. The charge 

is free to move on the conductor, and there is no preferred 

position on the surface; the charge is therefore distributed 

uniformly over the surface, and the system is spherically 

symmetric.  

To exploit this symmetry, we take as our Gaussian 

surface a sphere of radius 𝑟 centered on the conductor. 

 For 𝑟 > 𝑅 the entire conductor is within the Gaussian 

surface, so the enclosed charge is 𝑞, and 𝑬 is 

uniform over the surface and perpendicular to it at each point.  

                  𝑄𝑒𝑛𝑐𝑙 = 𝑞,   𝐴 = 4𝜋𝑟2, 𝐸⏊ = 𝐸, the electric flux is given by: 

 

Φ𝐸 = ∮ 𝐸⏊ ∙ 𝒅𝑨 = 𝐸𝐴 =
𝑄𝑒𝑛𝑐𝑙

𝜖0
                            ∴ 𝐸𝐴 = 𝐸(4𝜋𝑟2) =

𝑞

𝜖0
 

 

Thus, the field outside the conductor is:  𝐸 =
1

4𝜋𝜖0

𝑞

𝑟2 

 At the surface of the sphere, where 𝑟 = 𝑅:  𝐸 =
1

4𝜋𝜖0

𝑞

𝑅2
 

  

 For 𝑟 < 𝑅 we again have (4𝜋𝑟2) =
𝑄𝑒𝑛𝑐𝑙

𝜖0
 , But now our Gaussian surface (which lies entirely within the 

conductor) encloses no charge   𝑄𝑒𝑛𝑐𝑙 = 0.  
The electric field inside the conductor is therefore zero. 

 

 
 
 

 Field of a uniform line charge 

Example 1: Electric charge is distributed uniformly along an infinitely long, thin wire. The charge per unit 

length is (assumed positive). Find the electric field using Gauss’s law 

 

Solution: The flux through the flat ends of our Gaussian surface is zero 

because the radial electric field is parallel to these ends  

On the cylindrical part of our surface we have 𝐸⏊ = 𝐸 (𝑒𝑣𝑒𝑟𝑦𝑤ℎ𝑒𝑟𝑒). 

𝑄𝑒𝑛𝑐𝑙 = 𝜆𝑙,   𝐴 = 2𝜋𝑟𝑙 
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Φ𝐸 = ∮ 𝐸⏊ ∙ 𝑑𝐴 = 𝐸𝐴 =
𝑄𝑒𝑛𝑐𝑙

𝜖0
   

∴ 2𝜋𝑟𝑙𝐸 =
𝜆𝑙

𝜖0
 

Electric field of an infinite line of charge is    𝐸 =
𝜆

2𝜋𝜖0𝑟
 

 Field of an infinite plane sheet of charge 
Example 2: Use Gauss’s law to find the electric field caused by a thin, flat, infinite sheet with a uniform positive 

surface charge density 𝜎. 

Solution: The flux through the cylindrical part of our Gaussian surface is zero because 𝐸 is parallel to the 

surface. The flux through each flat end of the surface is +𝐸𝐴 . The total 

enclosed charge is 𝑄𝑒𝑛𝑐𝑙 = 𝜎𝐴  

and so from Gauss’s law, 

𝐸𝐴 × 2 =
𝜎𝐴

𝜖0
 

Therefore, the field of an infinite sheet of charge 

𝐸 =
𝜎

2𝜖0
 

 

Field between oppositely charged  

parallel conducting plates 
Example 3: Two large plane parallel conducting plates are given charges of equal magnitude and opposite sign; 

the surface charge densities are +𝜎 and −𝜎 Find the electric field in the region between the plates. 

           
The left-hand end of surface 𝑆1is within the positive plate 1. Since the field is zero within the volume of 

any solid conductor under electrostatic conditions, there is no electric flux through this end. The electric field 

between the plates is perpendicular to the right-hand end, so on that end, 𝐸⏊is equal to 𝐸 and the flux is 𝐸𝐴; this 

is positive, since 𝑬 is directed out of the Gaussian surface. There is no flux through the side walls of the  

 

cylinder, since these walls are parallel to 𝑬. So the total flux integral in Gauss’s law is 𝐸𝐴. The net 

charge enclosed by the cylinder is 𝜎𝐴, so 𝐸𝐴 = 𝜎𝐴 𝜖0⁄ . Thus, the field between oppositely charged conducting 

plates is  

𝐸 =
𝜎

𝜖0
 

The field is uniform and perpendicular to the plates, and its magnitude is independent of the distance from either 

plate. The Gaussian surface 𝑆4 yields the same result. Surfaces 𝑆2 and 𝑆3 yield 𝐸 = 0 to the left of plate 1 and to 

the right of plate 2, respectively. 

 Field of a uniformly charged sphere 
Example: Positive electric charge is distributed uniformly throughout the volume of an insulating sphere with 

radius Find the magnitude of the electric field at a point a distance from the center of the sphere. 
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Solution: From symmetry, the direction of 𝐸 is radial at every point on the 

Gaussian surface, so 𝐸⏊ = 𝐸  and the field magnitude is the same at every point 

on the surface. Hence the total electric flux through the Gaussian surface is the 

product of 𝐸 and the total area of the surface 𝐴 = 4𝜋𝑟2, that is Φ𝐸 = 4𝜋𝑟2E  

The amount of charge enclosed within the Gaussian surface depends on 𝑟. To 

find 𝐸 inside the sphere, we choose 𝑟 < 𝑅. The volume charge density 𝜌 is the 

charge 𝑄 divided by the volume of the entire charged sphere of radius 𝑅 . 

𝜌 =
𝑄

4𝜋𝑅3 3⁄
 

The volume 𝑉𝑒𝑛𝑐𝑙enclosed by the Gaussian surface is 
4

3
𝜋𝑟3, so the total charge 𝑄𝑒𝑛𝑐𝑙 enclosed by the surface is 

 𝑄𝑒𝑛𝑐𝑙 = 𝜌𝑉𝑒𝑛𝑐𝑙 = (
𝑄

4𝜋𝑅3 3⁄
)  

4

3
𝜋𝑟3 = 𝑄

𝑟3

𝑅3 

The Gaussian law becomes 

4

3
𝜋𝑟2𝐸 =

𝑄

𝜖0

𝑟3

𝑅3
 

Or the field inside a uniformly charge sphere 

 𝐸 =
1

4𝜋𝜖0

𝑄𝑟

𝑅3 

The field magnitude is proportional to the distance 𝑟 of the field point from the center of the sphere . 

To find E outside the sphere, 𝑟 > 𝑅. This surface encloses the entire charged sphere, so 𝑄𝑒𝑛𝑐𝑙 = 𝑄 and Gauss’s 

law gives 

4𝜋𝑟2𝐸 =
𝑄

𝜖0
 

The field outside a uniformly charged sphere is 

𝐸 =
1

4𝜋𝜖0

𝑄

𝑟2
 

 Charge on a hollow sphere 

Example : A thin-walled, hollow sphere of radius 0.250 𝑚 has an unknown charge distributed uniformly over 

its surface. At a distance of 0.3 𝑚 from the center of the sphere, the electric field points radially inward and has 

magnitude 1.8 × 102𝑁/𝐶. How much charge is on the sphere? 

Solution: The charge distribution is the same as if the charge were on the surface of a 0.25𝑚 radius conducting 

sphere. Also, the electric field here is directed toward the sphere, so that q must be negative. Furthermore, the 

electric field is directed into the Gaussian surface, so that 𝐸⏊ = −𝐸 and  

Φ𝐸 = ∮ 𝐸⏊ ∙ 𝑑𝐴 = 𝐸(2𝜋𝑟2) 

By Gauss’s law, the flux is           Φ𝐸 =
𝑞

𝜖0
= −𝐸(2𝜋𝑟2) 

∴ 𝑞 = −𝐸 × 2𝜋𝜖0𝑟2 

                                                                   = −1.8 × 102 × 2𝜋 × 8.85 × 10−12 × (0.3)2 

                                                                𝑞 = −1.8 × 10−9𝐶 
 

 

 Electric field of the earth 
Example: The earth (a conductor) has a net electric charge. The resulting electric field near the surface has an 

average value of about 150 𝑁/𝐶   directed toward the center of the earth. 𝑅𝐸 = 6.38 × 106𝑚. 
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(a) What is the corresponding surface charge density?  

(b) What is the total surface charge of the earth? 

 

Solution: (a) since 𝑬 is directed into the surface, then 𝜎 is negative, and so  𝐸⏊ = −𝐸. 

∴ 𝜎 = 𝜖0𝐸⏊ = 8.85 × 10−12 × (−150) 

= −1.33 × 10−9𝐶/𝑚2 

(b) 𝜎 is the charge per unit surface area. 

∴ 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑐ℎ𝑟𝑎𝑔𝑒 𝑄 = 4𝜋𝑅𝐸
2𝜎  ( or 𝑄 = 4𝜋𝜖0𝑅𝐸

2𝐸⏊) 

𝑄 = 4𝜋 × (6.38 × 106)2 × (−1.33 × 10−9) 

= −6.8 × 105 𝐶 
 

 

 

 

Lecture 4: Electric Potential                                                              

Electric Potential 
Review: 

1. Work done by a force to move a particle from point a to point b is 

𝑾𝒂→𝒃 = ∫ 𝑭. 𝒅𝒍 = ∫ 𝑭 𝒄𝒐𝒔 𝜽 𝒅𝒍

𝒃

𝒂

𝒃

𝒂

 

2. The work-energy theorem: 𝑾𝒕𝒐𝒕 = ∆𝑲 = 𝑲𝒃 − 𝑲𝒂 

 If the force is conservative, then 

𝑊𝒂→𝒃 = 𝑼𝒂 − 𝑼𝒃 = −(𝑼𝒃 − 𝑼𝒂) = −∆𝑼 = 𝒎𝒈𝒉 

3. Conservation of energy:     𝑲𝒂 + 𝑼𝒂 = 𝑲𝒃 + 𝑼𝒃 

 

Electric Potential Energy 

 When a charged particle moves in an electric field, the field exerts a force that can do work on the 

particle. The work can be expressed in terms of electric potential energy.  

 Electric potential energy depends only on the position of the charged particle in the electric field. 

 

Electric Potential Energy in a Uniform Field: 

A pair of charged parallel metal plates sets up a uniform, downward electric 

field with magnitude 𝑬. The field exerts a downward force with magnitude 

𝐹 = 𝑞0𝐸 on a positive test charge 𝑞0 . As the charge moves downward a 

distance 𝑑 from point 𝑎 to point 𝑏, the force on the test charge is constant 

and independent of its location. So the work done by the electric field is the 

product of the force magnitude and the component of displacement in the 

(downward) direction of the force:  
 

 

This work is positive, since the force is in the same direction as the net 

displacement of the test charge. 

The force exerted on by the uniform electric field is conservative, just as is 

the gravitational force. This means that the work done by the field is 

𝑊𝑎→𝑏 = 𝐹 𝑑 = 𝑞0𝐸 𝑑 
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independent of the path the particle takes from 𝑎 to b. We can represent this work with a potential-energy 

function 𝑈, just as we did for gravitational potential energy. The potential energy for the gravitational force was 

(𝐹𝑦 = −𝑚𝑔) was 𝑈 = 𝑚𝑔𝑦, hence the potential energy for the electric force (𝐹𝑦 = −𝑞0𝐸) is  

𝑈 = 𝑞0𝐸 𝑦  

When the test charge 𝑞0 moves from height 𝑦𝑎 to height 𝑦𝑏 the work done on the charge by the field is given by 

𝑊𝑎→𝑏 = −∆𝑈 = −(𝑈𝑏 − 𝑈𝑎) = −(𝑞0𝐸𝑦𝑏 − 𝑞0𝐸𝑦𝑎) = 𝑞0𝐸(𝑦𝑎 − 𝑦𝑏) 
 

 If the positive charge moves in the direction of the field, the potential energy decreases, but if the charge 
moves opposite the field, the potential energy increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A negative charge moving in a uniform field 
 If the negative charge moves in the direction of the field, the potential energy increases, but if the charge 

moves opposite the field, the potential energy decreases. 

 
 

Example: A point charge 𝑞 =  8.×  10−9 𝐶 is raised 5 𝑚𝑚 above the negative plate of a parallel plate capacitor 

that has an electric field intensity 𝐸 =  4 ×  104𝑁/𝐶.  

(a) Find the potential energy of the point charge at this location.  

(b) Is the potential energy increasing or decreasing and why?  
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Solution: (a) The potential energy of the point charge is: 

           𝑈 = 𝑞 𝐸 𝑦  

                =  (8.  ×  10−9)(4.  ×  104)(5.  ×  10−3)   

                =  1.60 ×  10−6 𝐽  

(b) The potential energy is increasing since the charge is moving opposite the direction of the field. 

Electric potential energy of two point charges 
Consider a point charge 𝑞 that sets up an electric field in space. 

Now a test charge 𝑞0 is placed at position 𝑎 a distance 𝑟𝑎 from 

𝑞0.  Then 𝑞0  moves to position 𝑏 a distance 𝑟𝑏 from 𝑞0. 

 

What is the change in the potential energy? 

The change in potential energy  is the negative of the work done 

to move the test charge from 𝑎  to 𝑏.  

The force on the test charge is given by Coulomb’s law 

𝐹 =
1

4𝜋𝜖0

𝑞𝑞0

𝑟2
 

 The work done is force times distance.  But the force  

      changes as 𝑞0 moves away from 𝑞 .  
 The force is not constant during the displacement, and we have 

to integrate to calculate the work  𝑊𝑎→𝑏 done on 𝑞0 by this force as 𝑞0 

moves from 𝑎 to 𝑏:  

     Use 𝑑𝑊 = 𝐹𝑟𝑑𝑟 

 

∴  𝑊𝑎→𝑏 = ∫ 𝐹𝑟  𝑑𝑟
𝑟𝑏

𝑟𝑎
= ∫

1

4𝜋𝜖0

𝑞𝑞0

𝑟2  𝑑𝑟
𝑟𝑏

𝑟𝑎
=

𝑞𝑞0

4𝜋𝜖0
(

1

𝑟𝑎
−

1

𝑟𝑏
)  

 

The work done on 𝑞0 by electric field does not depend on path taken, but only on distances 𝑟𝑎 and 𝑟𝑏 (initial and 

end points). 

 let’s consider a more general displacement in which 𝑎 and 𝑏 do not lie on the same radial line. 

The work done on 𝑞0 during this displacement is given by 

𝑊𝑎→𝑏 = ∫ 𝐹. 𝑐𝑜𝑠𝜑 𝑑𝑙

𝑟𝑏

𝑟𝑎

= ∫
1

4𝜋𝜖0

𝑞𝑞0

𝑟2
 𝑐𝑜𝑠𝜑 𝑑𝑙

𝑟𝑏

𝑟𝑎
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if 𝑞0 returns to its starting point 𝑎 by a different path, the total work done in 

the round-trip displacement is zero  

 

 

 

• The electric potential energy U when the test charge 𝑞0 is at any distance 

𝑟 from charge 𝑞 is 

𝑈 =
1

4𝜋𝜖0

𝑞𝑞0

𝑟
 

 The sign of the potential energy depends on the signs of the two charges.  

•  𝑈 =  0 when 𝑞 and 𝑞0 are infinitely apart (𝑟 → ∞). 

 

The change in potential energy, is the negative  

of this work.  

 

∆𝑈 = −𝑊 = 𝑈𝑏 − 𝑈𝑎 = −
𝑞𝑞0

4𝜋𝜖0
(

1

𝑟𝑎
−

1

𝑟𝑏
) 

 

 

 

Electrical potential with several point charges 
• The potential energy associated with q

0

 depends on the other charges and their 

distances from q
0

. 

𝑈 =
𝑞0

4𝜋𝜖0
(

𝑞1

𝑟1
+

𝑞2

𝑟2
+ ⋯ ) =

𝑞0

4𝜋𝜖0
∑

𝑞𝑖

𝑟𝑖
𝑖

 

• The total potential energy associated with a system of multiple charges is 

𝑈 =
1

4𝜋𝜖0
∑

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
𝑖<𝑗  

Example: Two point charges are located on the x-axis, q
1
 =  − 𝑒  at 𝑥 =  0 and               

q
2
 = +𝑒  𝑎𝑡 𝑥 =  𝑎.  

(a) Find the work that must be done by an external force to bring a third 

point charge q
3
 =  + 𝑒 from infinity to 𝑥 =  2𝑎. 

(b) Find the total potential energy of the system of the three charges. 
 

Solution: (a) The work 𝑊 equals the difference between the potential energy 𝑈 

associated with 𝑞3 when it is at  𝑥 = 2𝑎 and the potential energy 𝑈∞ = 0 when it is infinitely far away. So the 

work required is equal to 𝑈 

The distances between the charges are 𝑟13 = 2𝑎 and 𝑟23 = 𝑎 
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∴ 𝑊 = 𝑈 =
𝑞3

4𝜋𝜖0
(

𝑞1

𝑟13
+

𝑞2

𝑟23
) =

+𝑒

4𝜋𝜖0
(

−𝑒

2𝑎
+

+𝑒

𝑎
) =

+𝑒2

8𝜋𝜖0𝑎
 

 

(b) the total potential energy of the three charge system is 

𝑈 =
1

4𝜋𝜖0
∑

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
=

1

4𝜋𝜖0
(

𝑞1𝑞2

𝑟12
+

𝑞1𝑞3

𝑟13
+

𝑞2𝑞3

𝑟23
)

𝑖<𝑗

 

                                          =
1

4𝜋𝜖0
[

(−𝑒)(𝑒)

𝑎
+

(−𝑒)(𝑒)

2𝑎
+

(𝑒)(𝑒)

𝑎
] =

−𝑒2

8𝜋𝜖0𝑎
 

 

Electric potential  
DEFINITION: Electrical Potential is Potential Energy per Unit Charge 

 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑉) =
𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦(𝑈)

𝑈𝑛𝑖𝑡 𝐶ℎ𝑎𝑟𝑔𝑒(𝑞0)
 

Units:  𝑽𝒐𝒍𝒕 (𝑽) =  𝑱/𝑪 =  𝑵𝒎/𝑪 

Potential energy and charge are both scalars, so potential is a scalar quantity. 

Therefore divide all terms by 𝑞0  

𝑊𝑎→𝑏

𝑞0
=

𝑈𝑏

𝑞0
−

𝑈𝑎

𝑞0
=

−
𝑞𝑞0

4𝜋𝜖0
(

1
𝑟𝑎

−
1
𝑟𝑏

)

𝑞0
 

Thus     𝑉𝑏 − 𝑉𝑎 = −
𝑞

4𝜋𝜖0
(

1

𝑟𝑎
−

1

𝑟𝑏
) 

Or         𝑉𝑎 − 𝑉𝑏 =
𝑞

4𝜋𝜖0
(

1

𝑟𝑎
−

1

𝑟𝑏
) = 𝑉𝑎𝑏 

The difference 𝑉𝑎𝑏 = 𝑉𝑎 − 𝑉𝑏 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑡ℎ𝑒 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑜𝑓𝑎 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑏. or the potential difference 

between a and b 

The potential of a with respect to b (V
ab

 = V
a
 – V

b
) equals: 

 the work done by the electric force when a unit charge moves from a to b. 

 the work that must be done to move a unit charge slowly from b to a against the electric force. 

 

 Potential due to a point charge 𝑞 

𝑉 =
𝑈

𝑞0
=

1

4𝜋𝜖0

𝑞

𝑟
 

 Potential due to a collection of point charge 

𝑉 =
1

4𝜋𝜖0
∑

𝑞𝑖

𝑟𝑖
𝑖

 

 Potential due to a continuous distribution of charge 

𝑉 =
1

4𝜋𝜖0
∫

𝑑𝑞

𝑟
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Finding electric potential from the electric field 
The force 𝑭 on a test charge 𝑞0 can be written as 𝑭 = 𝒒𝟎𝑬.  The work done by the electric force as the test 

charge moves from 𝑎 to 𝑏 is given by 

𝑊𝑎→𝑏 = ∫ �⃗�. 𝑑𝑙⃗⃗⃗⃗
𝑏

𝑎

= ∫ 𝑞0�⃗⃗�. 𝑑𝑙⃗⃗⃗⃗
𝑏

𝑎

 

If we divide this by 𝑞0, the result is  

 

 
 

 

 

ELECTRON VOLT  

Definition: An electron volt is a unit for energy.  It is the work necessary to move an electron   (charge 𝑒 =

1.6 × 10−19 𝐶) a potential difference of 1 𝑣𝑜𝑙𝑡.  
The work to move a charge across a potential difference is  

𝑊 = 𝑞𝑉 = (1.6 × 1019𝐶)(1 𝑉) = 1.6 × 10−19𝐽 
Therefore, 

1 𝑒𝑉 = 1.6 × 10−19𝐽 
  

Example: (Potential due to two point charges) 

An electric dipole consists of point charges 𝑞1 =  + 12 𝑛𝐶 and 

𝑞2 =  − 12 𝑛𝐶 placed 10 𝑐𝑚 apart. Compute the electric 

potentials at point 𝑎,  𝑏,  𝑎𝑛𝑑 𝑐. Compute the potential energy 

associated with a +4 𝑛𝐶 point charge if it is placed in 𝑎,  𝑏,  𝑎𝑛𝑑 𝑐.  

 

Solution: At point 𝑎: 𝑟1 = 0.06 𝑚 and 𝑟2 = 0.04 𝑚, so the 

potential at a is 

𝑉𝑎 =
1

4𝜋𝜖0
∑

𝑞𝑖

𝑟𝑖
=

1

4𝜋𝜖0
(

𝑞1

𝑟1
+

𝑞2

𝑟2
)

𝑖

 

                      = 9 × 109 (
12×10−9

0.06
+

−12×10−9

0.04
) 

                      = −900 𝑉 

 

In a similar way you can show that the potential at point 𝑏 (where  𝑟1 = 0.04𝑚 and 𝑟2 = 0.14𝑚 ) is 𝑉𝑏 =

1930 𝑉 and that the potential at point 𝑐 (where 𝑟1 = 𝑟2 = 0.13𝑚) is 𝑉𝑐 = 0 . 
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Finding potential by integration 

Example: Find the potential at a distance 𝑟 from a point charge 
𝑞 by integrating the electric field. 

Solution: The most convenient path is a radial line as shown in 

Figure, so that 𝑑𝒍 is in the radial direction and has 

magnitude 𝑑𝑟. Writing 𝑑𝒍 = 𝒓𝑑𝑟 

𝑉 − 0 = 𝑉 = ∫ 𝑬 ∙ 𝑑𝒍
∞

𝑟
  

= ∫
1

4𝜋𝜖0

𝑞

𝑟2
𝑑𝑟 =

𝑞

4𝜋𝜖0𝑟
|

∞

𝑟
= 0 − (

𝑞

4𝜋𝜖0𝑟
)

∞

𝑟

 

∴ 𝑉 =
𝑞

4𝜋𝜖0𝑟
 

 

 

 

Moving through a potential difference 
Example: a dust particle with mass 𝑚 = 5 × 10−9 𝑘𝑔  and charge 𝑞0 = 2 𝑛𝐶  starts from rest and moves in a 

straight line from point 𝑎 to point 𝑏 as shown What is its speed  𝑣 at point  ? 

 
Solution: Only the conservative electric force acts on the particle, so mechanical energy is conserved: 𝐾𝑎 +
𝑈𝑎 = 𝐾𝑏 + 𝑈𝑏, 

𝐾𝑎 = 0 ( 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑠𝑡𝑎𝑟𝑡𝑠 𝑓𝑟𝑜𝑚 𝑟𝑒𝑠𝑡) 

𝑈 = 𝑞0𝑉,      𝑉 =
1

4𝜋𝜖0

𝑞

𝑟
  

∴  𝑞0𝑉𝑎 =
1

2
𝑚𝑣2 + 𝑞0𝑉𝑏      

                    ∴ 𝑣 = √
2𝑞0(𝑉𝑎−𝑉𝑏)

𝑚
 ,   

∴ 𝑉𝑎 = (9 × 109) (
3 × 10−9

0.01
+

(−3 × 10−9)

0.02
) = 1350 𝑉 

   𝑉𝑏 = (9 × 109) (
3 × 10−9

0.02
+

(−3 × 10−9)

0.01
) = −1350 𝑉 

   𝑉𝑎 − 𝑉𝑏 = 1350 − (−1350) = 2700 𝑉 

∴ 𝑣 = √
2(2 × 10−9)(2700)

5 × 10−9
= 46 𝑚/𝑠 
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Oppositely charged parallel plates 

Example: Find the potential at any height y between the two 
oppositely charged parallel plates.  

Solution 

The potential 𝑉(𝑦) at coordinate 𝑦 is the potential energy 

per unit charge: 

 

𝑉(𝑦) =
𝑈(𝑦)

𝑞𝑜
=

𝑞𝑜𝐸𝑦

𝑞𝑜
= 𝐸𝑦 

  

The potential decreases as we move in the direction of from 

the upper to the lower plate. At point 𝑎, where 𝑦 = 𝑑 and 

𝑉(𝑦) = 𝑉𝑎, 

𝑉𝑎 − 𝑉𝑏 = 𝐸𝑑 − 𝐸0 = 𝐸𝑑 

                                                    𝑉𝑎𝑏 = 𝐸𝑑 

                                                   ∴ 𝐸 =
𝑉𝑎𝑏

𝑑
, 

where 𝑉𝑎𝑏 is the potential of the positive plate with respect to the negative plate. That is, the electric field equals 

the potential difference between the plates divided by the distance between them. For a given potential 

difference the smaller the distance between the two plates, the greater the magnitude of the electric field. 

 

An infinite line charge or conducting cylinder 
Example:  Find the potential at a distance r from a very long line of charge with linear charge density λ. 

Solution: the electric field at a radial distance r from a long straight-line charge has only a radial component 

given by 𝐸𝑟 = 𝜆 4𝜋𝜖0𝑟⁄ . We use this expression to find the potential by integrating 𝑬. 

Since the field has only a radial component, we have 𝑬 ∙ 𝑑𝒍 = 𝐸𝑟𝑑𝑟. Hence from the potential of any point 𝑎 
with respect to any other point 𝑏 at radial distances 𝑟𝑎and 𝑟𝑏from the line of charge, is 

𝑉𝑎 − 𝑉𝑏 = ∫ 𝑬 ∙
𝑏

𝑎

𝑑𝒍 = ∫ 𝐸𝑟𝑑𝑟

𝒃

𝒂

=
𝜆

2𝜋𝜖0
∫

𝑑𝑟

𝑟

𝑟𝑏

𝑟𝑎

=
𝜆

2𝜋𝜖0
𝑙𝑛

𝑟𝑏

𝑟𝑎
 

We set 𝑉𝑏 = 0 at point at an arbitrary, but finite radial distance 𝑟0. Then the potential 𝑉 = 𝑉𝑎 at point 𝑎  at a 
radial distance 𝑟 is given  

𝑉 − 0 =
𝜆

2𝜋𝜖0
𝑙𝑛

𝑟0

𝑟
 

If we choose 𝑟0 to be the radius of the cylinder 𝑅, so that 𝑉 = 0 at 𝑟 = 𝑅, then at any point a for which  𝑟 > 𝑅 

𝑉 =
𝜆

2𝜋𝜖0
ln

𝑅

𝑟
 

Inside the cylinder 𝐸 = 0, and 𝑉 has the same value (zero) as on the cylinder’s surface. 
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A ring of charge 
Example: Electric charge Q is distributed uniformly around a thin ring of radius a. Find the potential at a point 

P on the ring axis at a distance x from the center. 

Solution: the distance from each charge element 𝑑𝑞 to 𝑃 is 𝑟 = √𝑥2 + 𝑎2.  

𝑉 =
1

4𝜋𝜖0

𝑞

𝑟
 

𝑉 =
1

4𝜋𝜖0
∫

𝑑𝑞

𝑟
=

1

4𝜋𝜖0

1

√𝑥2 + 𝑎2
∫ 𝑑𝑞 

𝑉 =
1

4𝜋𝜖0

𝑄

√𝑥2 + 𝑎2
 

 

Potential of a line of charge 
Positive electric charge 𝑄 is distributed uniformly along a line of length 2𝑎 lying along the y-axis between 

𝑦 = −𝑎 and = +𝑎 . Find the electric potential at a point 𝑃 on the x-axis at a distance 𝑥 from the origin. 

Solution:  the element of charge 𝑑𝑄 corresponding to an element of length 𝑑𝑦 on the rod is 𝑑𝑄 = (𝑄 2𝑎⁄ )𝑑𝑦. 

The distance from 𝑑𝑄 to 𝑃 is √𝑥2 + 𝑦2, so 

𝑑𝑉 =
1

4𝜋𝜖0

𝑄

2𝑎

𝑑𝑦

√𝑥2 + 𝑦2
 

∴ 𝑉 =
1

4𝜋𝜖0

𝑄

2𝑎
∫

𝑑𝑦

√𝑥2 + 𝑦2

+𝑎

−𝑎

=
1

4𝜋𝜖0

𝑄

2𝑎
(

√𝑎2 + 𝑥2 + 𝑎

√𝑎2 + 𝑥2 − 𝑎
) 

 

 

Lecture 5: Capacitance and dielectric 

Capacitance and Dielectrics 
 Capacitors and capacitance 
 Any two conductors separated by an insulator form a capacitor. 
 The definition of capacitance is  

𝐶 =
𝑄

𝑉𝑎𝑏
 

 The SI unit of capacitance is called one farad  (1 F),  

  One farad is equal to one coulomb per volt    

                                                   𝐹 = 𝐶
𝑉⁄  

 Parallel-plate capacitor 
 A parallel-plate capacitor consists of two parallel conducting 

plates separated by a distance that is small compared to their 

dimensions. 
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Example1: The parallel plates of a 1𝐹 capacitor are 1 𝑚𝑚 apart. What is their area?  

Solution:                                         C = 
0
A/d. 

∴ 𝐴 =
𝐶𝑑

𝜖0
=

(1)(1 × 10−3)

8.85 × 10−12
= 1.1 × 108 𝑚2 

Example 2: The plates of a parallel-plate capacitor in vacuum are 5 𝑚𝑚 apart and in 2 𝑚2 area. A 10kV 

potential difference is applied across the capacitor.  

Compute (a) the capacitance; 

               (b) The charge on each plate; and  

               (c) The magnitude of the electric field between the plates. 

Solution: (a) 𝐶 =
𝜖0𝐴

𝑑
=

(8.85×10−12)(2)

5×10−3 = 3.54 × 10−9𝐹 = 3.54 𝑛𝐹 

(b) The charge on the capacitor is 

𝑄 = 𝐶𝑉𝑎𝑏 = (3.54 × 10−9)(1 × 104) = 3.54 × 10−5 = 35.4𝜇𝐶 

The plate at higher potential has charge +35.4𝜇𝐶, and the other 

plate has charge −35.4𝜇𝐶. 
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(c) The magnitude of the electric field is 

𝐸 =
𝜎

𝜖0
=

𝑄

𝜖0𝐴
=

3.54 × 10−9

8.85 × 10−12 × 2
= 2 × 106𝑁/𝐶 

Note: the dimension of  𝜖0 =
𝐶𝑑

𝐴
= [

𝐹𝑎𝑟𝑎𝑑

𝑚𝑒𝑡𝑒𝑟
] 

𝜖0 =
𝐶𝑑

𝐴
=

𝑄
𝑉𝑎𝑏

𝑑

𝐴
=

𝑄𝑑

𝐴𝑉𝑎𝑏
=

𝑄𝑑

𝐴𝐸𝑑
=

𝑄

𝐴
𝐹
𝑄

=
𝑄2

𝐴𝐹
= [

𝐶𝑜𝑢𝑙𝑜𝑚𝑏2

𝑚2. 𝑁𝑒𝑤𝑡𝑜𝑛
] 

A spherical capacitor 
Two concentric spherical conducting shells are separated by 

vacuum. The inner shell has total charge +𝑄 and outer radius 

𝑟𝑎 and the outer shell has charge −𝑄 and inner radius 𝑟𝑏. 

Find the capacitance of this spherical capacitor.  
 

 

 

 

 

Solution: The potential at any point between the spheres is 𝑉 = 𝑄 4𝜋𝜖0𝑟⁄ . Hence the potential of the inner 

(positive) conductor at 𝑟 = 𝑟𝑎 with respect to that of the outer (negative) conductor at 𝑟 = 𝑟𝑏 is 

 

 

 

 

 

 

 

 

Capacitors in series 

Capacitors are in series if they are connected 

one after the other. 
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 In a series connection the magnitude of charge on all plates is the same. 

 

𝐶 =
𝑄

𝑉
                                  𝑉 =

𝑄

𝐶
 

 

 

𝑉 = 𝑉1 + 𝑉2 =
𝑄

𝐶1
+

𝑄

𝐶2
= 𝑄 (

1

𝐶1
+

1

𝐶2
)                  

𝑉

𝑄
= (

1

𝐶1
+

1

𝐶2
) =

1

𝐶𝑒𝑞
 

 

The equivalent capacitance of a series combination is given by:  

∴
1

𝐶𝑒𝑞
=

1

𝐶1
+

1

𝐶2
 

Capacitors in parallel 
Capacitors are connected in parallel between 𝑎 and 𝑏 if the potential difference 

𝑏
 is 𝑉𝑎𝑏 the same for all the 

capacitors.  
 

                           
Potential difference 𝑉𝑎𝑏 is the same for all the capacitors.  

𝐶 =
𝑄

𝑉
                            𝑄 = 𝐶𝑉 

 

𝑄 = 𝑄1 + 𝑄2 = 𝐶1𝑉 + 𝐶2𝑉 = 𝑉(𝐶1 + 𝐶2)               
𝑄

𝑉
= 𝐶1 + 𝐶2 = 𝐶𝑒𝑞 

 

The equivalent capacitance of a Parallel combination is given by:  

𝐶𝑒𝑞 = 𝐶1 + 𝐶2 
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------------------------------------------------------------------------------------------------------------------ 

Example 1: let 𝐶1 = 6𝜇𝐹 and 𝐶2 = 3𝜇𝐹 . Find the equivalent capacitance 𝑉𝑎𝑏 = 18 𝑉 and the charge and 

potential difference for each capacitor when the capacitors are connected  

(a) in series  and (b) in parallel. 
 

Solution: (a) for a series combination, 
1

𝐶𝑒𝑞
=

1

𝐶1
+

1

𝐶2
=

1

6 × 10−6
+

1

3 × 10−6
=

3

6 × 10−6
 

 

𝐶𝑒𝑞 = 2 × 10−6 = 2𝜇𝐹 

The charge on each capacitor in series is the same as that on the equivalent capacitor: 

𝑄 = 𝐶𝑒𝑞𝑉 = 2 × 10−6 × 18 = 36 × 10−6 = 36𝜇𝐶. 

The potential difference across each capacitor is inversely proportional to its capacitance: 

𝑉1 =
𝑄

𝐶1
=

36 × 10−6

6 × 10−6
= 6𝑉 

𝑉2 =
𝑄

𝐶2
=

36 × 10−6

3 × 10−6
= 12𝑉 

(b) For a parallel combination, 

𝐶𝑒𝑞 = 𝐶1 + 𝐶2 = 6𝜇𝐹 + 3𝜇𝐹 = 9𝜇𝐹 

The potential difference across each of the capacitors is the same as that across the equivalent capacitor, 18 𝑉. 

The charge on each capacitor is directly proportional to its capacitance: 

𝑄1 = 𝐶1𝑉 = 6 × 10−6 × 18 = 108𝜇𝐶 

𝑄2 = 𝐶2𝑉 = 3 × 10−6 × 18 = 54𝜇𝐶 
 

Example 2: Find the equivalent capacitance of the five-capacitor network shown in the Figure. 
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Energy stored in a capacitor 

The potential energy stored in a capacitor is  

𝑈 =
𝑄2

2𝐶
=

1

2
𝐶𝑉2 =

1

2
𝑄𝑉 

 

Example: We connect a capacitor 𝐶1 = 8𝜇𝐹 to a power supply, charge it to a potential difference 𝑉0 = 120𝑉, 

and disconnect the power supply. Switch is open. (a) What is the charge 𝑄0  on 𝐶1?  

(b) What is the energy stored in 𝐶1?  

(c) Capacitor 𝐶2 = 4𝜇𝐹 is initially uncharged. We close 

switch S. After charge no longer flows, what is the 

potential difference across each capacitor, and what 

is the charge on each capacitor?  

(d) What is the final energy of the system?  

Solution: (a) the initial charge 𝑄0 on 𝐶1 is 

𝑄0 = 𝐶1𝑉0 = 8 × 10−6 × 120 = 960 𝜇𝐶 

(b) The energy initially stored in 𝐶1 is 

𝑈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
1

2
𝑄0𝑉0 =

1

2
× 960 × 10−6 × 120 = 0.058 J 

(c) The charge 𝑄0 is distributed over the two capacitors.  

𝑄0 = 𝑄1 + 𝑄2 

Since the two capacitors are connected in parallel, 𝑉 is the same for both. 

 

𝑉 =
𝑄0

𝐶1 + 𝐶2
=

960𝜇𝐶

8𝜇𝐹 + 4𝜇𝐹
= 80 𝑉 

                  (d) The final energy of the system is 

𝑈𝑓𝑖𝑛𝑎𝑙 =
1

2
𝑄1𝑉 +

1

2
𝑄2 +

1

2
𝑄0 

 

                                                                =
1

2
(960 × 10−6)(80) = 0.038 𝐽 

 

Electric-Field Energy 
We can charge a capacitor by moving electrons directly from one plate to another. This requires doing work 

against the electric field between the plates. Thus we can think of the energy as being stored in the field in the 

region between the plates. To develop this relationship, let’s find the energy per unit volume in the space 

between the plates of a parallel-plate capacitor with plate area 𝐴 and separation 𝑑. We call this the energy 

density, denoted by 𝑢, 
 

 

𝑒𝒏𝒆𝒓𝒈𝒚 𝒅𝒆𝒏𝒔𝒊𝒕𝒚 = 𝒖 =
𝒔𝒕𝒐𝒓𝒆𝒅 𝒑𝒐𝒕𝒆𝒏𝒕𝒊𝒂𝒍 𝒆𝒏𝒆𝒓𝒈𝒚

𝑽𝒐𝒍𝒖𝒎𝒆
=

𝟏

𝟐
𝑪𝑽𝟐

𝑨𝒅
 

 

The capacitance is 𝐶 = 𝜖0
𝐴

𝑑
   and the potential is given by 𝑉 = 𝐸𝑑 

Therefore, 

𝑢 =

1
2 (𝜖0

𝐴
𝑑

)(𝐸2𝑑2)

𝐴𝑑
=

1

2
𝜖0𝐸2 

                                                        =
1

2
(960 × 10−6)(80) = 0.038 𝐽 

A 

d 
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Example: 

(a) What is the magnitude of the electric field required to store 1 𝐽 of electric potential energy in a 

volume of  1𝑚3 in vacuum?  

(b) If the field magnitude is 10 times larger than that, how much energy is stored per cubic meter?  

𝑢 =
1

2
𝜖0𝐸2 

𝐸 = √
2𝑢

𝜖0
= √

2

8.85 × 10−12
= 4.75 × 105𝑁/𝐶 

(b)  Since u is proportional to 𝐸2, so if E increases by a factor of 10 then 𝑢  increases by a factor of 102. So the 

energy density becomes 𝑢 = 100 𝐽/𝑚3 

Dielectrics 

A dielectric is  a non-conducting material that, when placed between the plates of a capacitor, increases the 
capacitance. 

 Dielectrics include rubber, plastic, and waxed paper 
  If the dielectric completely fills the space between the plates, the capacitance increases by a factor 

𝐾 called the dielectric constant  
 

𝐾 = 𝐶
𝐶0

⁄  

 
      No dielectric                                                                            with dielectric 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since 
 
 
 
 
 
 

 

Solution:  (a) 

𝐶0 =
𝑄

𝑉0
 𝐶 =

𝑄

𝑉
 

𝑉 < 𝑉0 𝐶 > 𝐶0 

𝑄 = 𝐶0𝑉0 = 𝐶𝑉 
𝑉0

𝑉
=

𝐶

𝐶0
= 𝐾 ∴ 𝑉 =

𝑉0

𝑘
 

𝐾 ≥ 1 

 The capacitance when the dielectric is present between two plates of area 

A and d apart is given by 

𝐶 = 𝐾𝐶0 = 𝐾𝜖0

𝐴

𝑑
= 𝜖

𝐴

𝑑
 

𝜖 = 𝐾𝜖0 

• Where 𝜖 is the permittivity of the dielectric 
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Example: Suppose the parallel plates each have an area of (0.2𝑚2 ) and are (1𝑐𝑚 ) apart. We connect the 

capacitor to a power supply, charge it to a potential difference 𝑉0 = 3 𝑘𝑉 and disconnect the power supply. 

We then insert a sheet of insulating plastic material between the plates, completely filling the space between 

them. We find that the potential difference decreases to 1 𝑘𝑉, while the charge on each capacitor plate 

remains constant. Find  

(a) The original capacitance.  

(b) The magnitude of charge on each plate;  

(c) The capacitance after the dielectric is inserted;  

(d) The dielectric constant of the dielectric;  

(e) The permittivity 𝜖 of the dielectric;  

(f) The original electric field 𝐸0 between the plates; and  

(g) The electric field 𝐸 after the dielectric is inserted. 

Solution: (a) With vacuum between the plates, 𝐾 = 1 

 

 

 

 

 

 

 

 

 

 

 

 

𝐸 =
𝑉

𝑑
=

1000

0.01
= 1 × 105 𝑉/𝑚 

 

 

 

 

 

𝐶0 = 𝜖0

𝐴

𝑑
= (8.85 × 10−12)

0.2

0.01
= 1.77 × 10−10

= 177𝑝𝐹 
(b)  𝑄 = 𝐶0𝑉0 = 1.77 × 10−10 × 3 × 103 = 5.31 × 10−7 𝐶 

(c) When the dielectric is inserted, Q is unchanged but the potential difference decreases 

       to 𝑉 = 1 𝑘𝑉. Hence, the new capacitance is 

𝐶 =
𝑄

𝑉
=

5.31 × 10−7

1 × 103
= 5.31 × 10−10 𝐹

= 531 𝑝𝐹 
(d) The dielectric constant is 

𝐾 =
𝐶

𝐶0
=

5.31 × 10−10

1.77 × 10−10
= 3 Or    𝐾 =

𝑉0

𝑉
=

3000

1000
= 3 

 (e) The permittivity of the dielectric is 

𝜖 = 𝐾𝜖0 = 3 × 8.85 × 10−12

= 2.66 × 10−11𝐶2/𝑁𝑚2 

(f) Since the electric field between the plates is uniform, its magnitude is the potential 

difference divided by the plate separation: 

𝐸0 =
𝑉0

𝑑
=

3000

0.01
= 3 × 105 𝑉/𝑚 

(g) After the dielectric is inserted, 
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Lecture 6: Current, resistance, and electromotive force 

Current, Resistance, and Electromotive Force 

 
Current 

A current is any motion of charge from one region to another. Current is defined as  

𝐼 =
𝑑𝑄

𝑑𝑡
 

In electrostatic situations the electric field is zero everywhere inside the 
conductor, and there is no current. However, this does not mean that all 
charges within the conductor are at rest. In an ordinary metal such as copper or 
aluminum, some of the electrons are free to move within the conducting 
material. These free electrons move randomly in all directions, somewhat 
like the molecules of a gas but with much greater speeds, of the order 
of106𝑚/𝑠. The electrons nonetheless do not escape from the conducting 
material, because they are attracted to the positive ions of the material. The 
motion of the electrons is random, so there is no net flow of charge in any 
direction and hence no current. 

 An electric field in a conductor causes charges to flow. 

Now consider what happens if a constant, steady electric field 𝐸is established 

inside a conductor. A charged particle (such as a free electron) inside the 

conducting material is then subjected to a steady force 𝑭 = 𝑞𝑬. If the charged particle were moving in vacuum, 

this steady force would cause a steady acceleration in the direction of F and after a time the charged particle 

would be moving in that direction at high speed. But a charged particle moving in a conductor undergoes 

frequent collisions with the massive, nearly stationary ions of the material. In each such collision the particle’s 

direction of motion undergoes a random change. The net effect of the electric field E is that in addition to the 

random motion of the charged particles within the conductor, there is also a very slow net motion or drift of the 

moving charged particles as a group in the direction of the electric force 𝑭 = 𝑞𝑬. This motion is described in 

terms of the drift velocity 𝒗𝒅 of the particles. As a result, there is a net current in the conductor. 

The current through the cross-sectional area A is defined as the net charge flowing through the area per unit 

time. Thus, if a net charge 𝑑𝑄 flows through an area in a time 𝑑𝑡 , the current through the area is 

𝐼 =
𝑑𝑄

𝑑𝑡
 

 

The SI unit of current is the ampere; one ampere is defined to be one coulomb per second. 1𝐴 = 1𝐶/𝑠 

Current, drift velocity, and current density 

Suppose there are 𝑛 moving charged particles per unit volume. We call 𝑛 the concentration of particles; its SI unit 
is 𝑚−3.  
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Assume that all the particles move with the same drift velocity with magnitude 𝑣𝑑 
In a time interval 𝑑𝑡 , each particle moves a distance 𝑣𝑑𝑑𝑡 The particles that 
flow out of the right end of the shaded cylinder with length 𝑣𝑑𝑑𝑡 during 
𝑑𝑡 are the particles that were within this cylinder at the beginning of 
the interval𝑑𝑡 . The volume of the cylinder is𝐴𝑣𝑑  𝑑𝑡, and the number of 
particles within it is𝑛𝐴𝑣𝑑  𝑑𝑡. If each particle has a charge 𝑞, the charge 𝑑𝑄 
that flowsout of the end of the cylinder during time 𝑑𝑡 is 

𝑑𝑄 = 𝑞(𝑛𝐴𝑣𝑑𝑑𝑡) 

And the current is 

𝐼 =
𝑑𝑄

𝑑𝑡
= 𝑛𝑞𝑣𝑑𝐴 

 

The current per unit cross-sectional area is called the current density J, 

𝐽 =
𝐼

𝐴
= 𝑛𝑞𝑣𝑑 

The SI units of current density are amperes per square meter (𝐴 𝑚2⁄ ). 

If the moving charges are negative, the drift velocity is opposite to E but the current is still in the same direction 

as E at each point in the conductor. Hence, the current I and the current density J do not depend on the sign of 

the charge, and so we use the absolute value of the charge|𝑞|: 

𝐼 =
𝑑𝑄

𝑑𝑡
= 𝑛|𝑞|𝑣𝑑𝐴 

𝐽 =
𝐼

𝐴
= 𝑛|𝑞|𝑣𝑑 

Example: An 18-gauge copper wire (the size usually used for lamp cords), with a diameter of 1.02 𝑚𝑚 carries a 

constant current of 1.67 𝐴 to a 200-W lamp. The free-electron density in the wire is 8.5 × 1028  per cubic meter. 

Find  

(a) The current density and  

(b) The drift speed. 

 

Solution: (a) The cross-sectional area is 

𝐴 =
𝜋𝑑2

4
=

𝜋(1.02 × 10−3)2

4
= 8.17 × 10−7𝑚2 

The magnitude of the current density is 

𝐽 =
𝐼

𝐴
=

1.67

8.17 × 10−7
= 2.04 × 106 𝐴/𝑚2 

                  (b) The drift velocity 

𝑣𝑑 =
𝐽

𝑛|𝑞|
=

2.04 × 106

(8.5 × 1028)|−1.6 × 10−19|
= 1.5 × 10−4𝑚/𝑠 = 0.15𝑚𝑚/𝑠 
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 Resistivity 

 The resistivity (𝜌)of a material is the ratio of the electric field in the material to the current density it causes: 

 

 

𝜌 =
𝐸

𝐽
 

 The units of    𝜌 is 
(𝑉 𝑚⁄ )

(𝐴 𝑚2⁄ )
= 𝑉. 𝑚 𝐴⁄  

 A perfect conductor would have zero resistivity, and a perfect insulator would have an infinite 

resistivity. Metals and alloys have the smallest resistivity and are the best conductors.  

 Semiconductors have resistivity intermediate between those of metals and those of insulators. These 

materials are important because of the way their resistivity is affected by temperature and by small 

amounts of impurities. 

• The conductivity(𝜎) is the reciprocal of the resistivity.      𝜎 =
1

𝜌
 

 The resistivity of a metallic conductor nearly always increases with increasing temperature.  

 As temperature increases, the ions of the conductor vibrate with greater amplitude, making it more 

likely that a moving electron will collide with an ion, this impedes the drift of electrons through 

the conductor and hence reduces the current. 

  Over a small temperature range (up to 1000or so), the resistivity of a metal can be represented 

approximately by the equation  

 

𝜌(𝑇) = 𝜌0[1 + 𝛼(𝑇 − 𝑇0)] 
 

where 𝜌0 is the resistivity at 𝑇0 a reference temperature (often taken as 00𝐶 or 200𝐶 ) and 𝜌(𝑇) is the resistivity 

at temperature 𝑇, which may be higher or lower than 𝑇0The factor 𝛼 is called the temperature coefficient of 

resistivity. 

 Resistance 
 For a conductor of length L and cross-sectional area A, the 

potential difference between its ends is V. 

 the electric field is 𝐸 =
𝑉

𝐿
   and  

 the current density 𝐽 =
𝐼

𝐴
 

 
 but 𝐸 = 𝜌𝐽 

 

 ∴
𝑉

𝐿
= 𝜌

𝐼

𝐴
 , so   𝑉 =

𝜌𝐿

𝐴
 𝐼 

 
The constant of proportionality between 𝑉 and 𝐼 is the resistance 𝑅  
 

∴ 𝑅 =
𝜌𝐿

𝐴
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 The equation V = IR is called Ohm’s law.  

 Color code for resistors and symbols in circuit diagrams 

 This resistor has a resistance of 5.7 kΩ with a tolerance of ±10%.  

   

                                                                                                𝑅 = 5700 

Because the resistivity of a material varies with temperature, the resistance of a specific conductor also varies 

with temperature. 

𝑅(𝑇) = 𝑅0[1 + 𝛼(𝑇 − 𝑇0)] 

Where 𝑅0 is the resistivity at 𝑇0 (often taken as 00𝐶 or 200𝐶) and R(𝑇) is the resistivity at temperature 𝑇, the 

temperature coefficient of resistance 𝛼 is the same as for the resistivity if L and A do not change appreciably 

with temperature . 

 

Example: A copper wire has a cross-sectional area of  8.2 × 10−7 𝑚2. It carries a current of 1.67 𝐴  and of 

resistivity 1.72 × 10−7 𝛺 . 𝑚. Find  

(a) The electric-field magnitude in the wire;  

(b) The potential difference between two points in the wire 50 𝑚 apart;  

(c) The resistance of a length 50 𝑚 of this wire.   

Solution:  (a) the electric field magnitude is 

𝐸 = 𝜌𝐽 =
𝜌𝐼

𝐴
=

1.72 × 10−7 × 1.67

8.2 × 10−7
= 0.035 𝑉/𝑚 

                 (b) The potential difference is 

𝑉 = 𝐸𝐿 = 0.035 × 50 = 1.75 𝑉 
                 (c) The resistance of 50 m of this wire is 

𝑅 =
𝜌𝐿

𝐴
=

1.72 × 10−7 × 50

8.2 × 10−7
= 1.05 𝛺 

 the same result can be found from   

𝑅 =
𝑉

𝐼
=

1.75

1.67
= 1.05 𝛺 

 

Example 2: Suppose the resistance of a copper wire is 1.05 Ω at  200 Find the resistance at 00𝐶 𝑎𝑛𝑑 1000 𝐶. 

The temperature coefficient of copper is 0.00393 (𝐶)−1.  

=5.7 k 10% 
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Solution:   

 the temperature at 𝑇 = 00𝐶 is  

𝑅(0) = 𝑅0[1 + 𝛼(𝑇 − 𝑇0)] 

                                                                 = 1.05[1 + (0.00393)(0 − 20)] = 0.97 𝛺 

 the temperature at 𝑇 = 1000𝐶 is  

                                                       𝑅(100) = 1.05[1 + (0.00393)(100 − 20)] = 1.38 𝛺 

 Electromotive Force and Circuits 

 In an electric circuit there should be a device that acts like the water pump in a fountain (source of emf.)  

 In this device, the charge travels “uphill” from lower to higher V (opposite to normal conductor) due to the 

emf force. 

 emf  (𝜀) is not a force but energy/unit charge   

Units: 1 V = 1 J/C 

 emf device convert energy (mechanical,  chemical, thermal) into electric potential  energy and transfer it to 

circuit. 

 Every complete circuit with a steady current must include some device that provides emf 

 



37 

2المادة:  الفيزياء                                                                          المرحلة الاولى                
 د. وسام عبدالله لطيف

 

 

Example 1: The figure shows a source (a battery) with emf and internal resistance = 2𝛺 . The wires to the left of 

𝑎 and to the right of the ammeter 𝐴 are not connected to anything. Determine the respective readings 𝑉𝑎𝑏 and 𝐼 

of the idealized voltmeter 𝑉 and the idealized ammeter A. 

Solution: There is zero current because there is no complete circuit. (Our idealized voltmeter has an infinitely 

large resistance, so no current flows through it.) Hence the ammeter 

reads 𝐼 =  0 . Because there is no current through the battery, there is 

no potential difference across its internal  

resistance. From  𝑉𝑎𝑏 = 𝜀 − 𝐼𝑟 with  𝐼 = 0  the potential difference 𝑉𝑎𝑏 

across the battery terminals is equal to the emf. So the voltmeter reads 

𝑉𝑎𝑏 = 𝜀 = 12 𝑉 . The terminal voltage of a real, nonideal source equals 

the emf only if there is no current flowing through the source, as in this 

example. 

abV  E
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Example 2:  We add a 4 𝛺  resistor to the battery in Example 1, to form a complete circuit. What are the 

voltmeter and ammeter readings 𝑉𝑎𝑏 and 𝐼 now? 

Solution: The current through the circuit 𝑎𝑎’𝑏’𝑏 is 

𝐼 =
𝜀

𝑅 + 𝑟
=

12

4 + 2
= 2 𝐴 

the idealized ammeter have zero resistance, so there is no potential 

difference between points a and b or between points a’ and b’ that is,  

𝑉𝑎𝑏 = 𝑉𝑎′𝑏′, . We find 𝑉𝑎𝑏 by considering a and b as the terminals of the 

resistor. From Ohm’s law  

𝑉𝑎′𝑏′ = 𝐼𝑅 = 2(4) = 8 𝑉 

we can consider a and b as the terminals of the source. Then, 

𝑉𝑎𝑏 = 𝜀 − 𝐼𝑟 = 12 − (2 × 2) = 8 𝑉 
Either way, we see that the voltmeter reading is 8 V. 

 Using voltmeters and ammeters 

Example 3: We move the voltmeter and ammeter in Example 2 to different 

positions in the circuit. What are the readings of the ideal voltmeter and ammeter 

in the situations shown in figure (a) and (b)? 

Solution: (a) The voltmeter now measures the potential difference between points 

a’ and b’ As in Example 2, 𝑉𝑎𝑏 = 𝑉𝑎′𝑏′ , so the voltmeter reads the same as in 

Example 2 𝑉𝑎′𝑏′ = 8𝑉. 

 

 

(b) There is no current through the ideal voltmeter because it has infinitely large 

resistance. Since the voltmeter is now part of the circuit, there is no current at all 

in the circuit, and the ammeter reads 𝐼 = 0.  
As in Example 1, there is no current, so the terminal voltage equals the emf, and 

the voltmeter reading is 𝑉𝑎𝑏 = 𝜀 = 12 𝑉 

 A source with a short circuit 

Example 4: In the circuit of Example 2 we replace the resistor with a zero-

resistance conductor. What are the meter readings now? 

Solution:  since there is no external resistance in the circuit. We must have  

𝑉𝑎𝑏 = 𝐼𝑅 = 𝐼(0) = 0 
We can therefore find the current I 

𝑉𝑎𝑏 = 𝜀 − 𝐼𝑟 = 0 

∴ 𝐼 =
𝜀

𝑟
=

12

2
= 6 𝐴 

 Potential changes around a circuit 

The net change in potential energy for a charge q making a round trip around a 

complete circuit must be zero. Hence the net change in potential around the circuit 

must also be zero; in other words, the algebraic sum of the potential differences 

and emfs around the loop is zero.  

𝜀 − 𝐼𝑟 = 𝐼𝑅  

𝜀 − 𝐼𝑟 − 𝐼𝑅 = 0 
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A potential gain of 𝜀 is associated with the emf, and potential drops of Ir and IR are associated with the internal 

resistance of the source and the external circuit, 

If we take the potential to be zero at the negative terminal of the battery, then we have a rise 𝜀 and a drop Ir in 

the battery and an additional drop IR in the external resistor, and as we finish our trip around the loop, the 

potential is back where it started.  

 Energy and power in electric circuits 

In electric circuits we are most often interested in the rate at which energy is either delivered to or extracted 

from a circuit element. If the current through the element is I , then in a time interval dt an amount of charge 

𝑑𝑄 = 𝐼𝑑𝑡 passes through the element. The potential energy change for this amount of charge is 𝑉𝑎𝑏𝑑𝑄 =
𝑉𝑎𝑏𝐼𝑑𝑡. Dividing this expression by dt, we obtain the rate at which energy is transferred either into or out of the 

circuit element. The time rate of energy transfer is power, denoted by P, so we write 

𝑃 = 𝑉𝑎𝑏𝐼    The unit of power is Watt   1 𝑊 = 1𝐽/𝑠 
 

 Power Input to a Pure Resistance 
If the circuit element in the figure is a resistor, the potential difference is 

𝑉𝑎𝑏 = 𝐼𝑅. Then, the electrical power delivered to the resistor by the circuit is 

𝑃 = 𝑉𝑎𝑏𝐼 = 𝐼2𝑅 =
𝑉𝑎𝑏

2

𝑅
 

This power is usually dissipated in the resistor as heat  

Example: The power rating of a light bulb (such as a 100-W bulb) is the power it dissipates when connected 

across a 120-V potential difference. What is the resistance of 

(a) a 100-W bulb and   (b) a 60-W bulb?  (c) How much current does each bulb draw in normal use?  

Solution: (a)  𝑅 =
𝑉2

𝑃
=

(120)2

100
= 144 Ω                               (b) 𝑅 =

𝑉2

𝑃
=

(120)2

60
= 240 Ω  

                (c) For the 100-W bulb: 𝐼 = 𝑉/𝑅 = 120/144 = 0.833 𝐴     

                      For the 60-W bulb: 𝐼 = 𝑉/𝑅 = 120/240 = 0. 5 𝐴  
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Lecture 7:  Direct Current circuit 

 

Direct Current 
 

• When the current in a circuit has a constant direction, the current is called direct current 

• Most of the circuits analyzed will be assumed to be in steady state, with constant magnitude and 

direction 

• Because the potential difference between the terminals of a battery is constant, the battery 

produces direct current The battery is known as a source of emf 

 emf and Internal Resistance 

A real battery has some internal resistance r ; 

therefore, the terminal voltage is not equal to 

the emf 

The terminal voltage:  ∆𝑉 = 𝑉𝑏 − 𝑉𝑎  

𝛥𝑉 =  𝜀 – 𝐼𝑟  

 

For the entire circuit (R – load resistance): 

𝜀 =  𝛥𝑉 +  𝐼𝑟  

            =  𝐼𝑅 + 𝐼𝑟  
 

ε is equal to the terminal voltage when the current is zero – open-circuit voltage 

𝐼 =  𝜀 / (𝑅 +  𝑟) 

 

The current depends on both the resistance external to the battery and the internal resistance 

           When R >> r, r can be ignored. 

Power relationship:           𝐼 𝜀 =  𝐼2 𝑅 + 𝐼2 𝑟   
 

When R >> r, most of the power delivered by the battery is transferred to the load resistor, 𝐼2 𝑟  can be 
ignored 

 Resistors in Series 
When two or more resistors are connected end-to-end, they are said to be in 
series. 
The current is the same in all resistors because any charge that flows 
through one resistor flows through the other. 
The sum of the potential differences across the resistors is equal to the total 
potential difference across the combination. 

𝐼1 = 𝐼2 = 𝐼 

∆𝑉 = 𝐼𝑅1 + 𝐼𝑅2 = 𝐼(𝑅1 + 𝑅2) = 𝐼𝑅𝑒𝑞 

Where 𝑅𝑒𝑞 = 𝑅1 + 𝑅2 

The equivalent resistance has the effect on the circuit as the original combination of resistors 
(consequence of conservation of energy) 

For more resistors in series:  
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𝑅𝑒𝑞 = 𝑅1 + 𝑅2 + 𝑅3+⋯ 

 
The equivalent resistance of a series combination of resistors is greater than any of the individual 
resistors 

 

 Resistors in Parallel 

The potential difference across each resistor is the same because each is 

connected directly across the battery terminals 

 

 

The current, I, that enters a point must be equal to the total current 

leaving that point (conservation of charge) 

       

The currents are generally not the same 
 

 

 

 

 

 

 

 For more resistors in parallel: 

 

 

 

                                                                                                                              

                                                                                        

 The inverse of the equivalent resistance of two or more resistors 

connected in parallel is the algebraic sum of the inverses of the individual 

resistance 

 The equivalent is always less than the smallest resistor in the 

group 
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 Problem-Solving Strategy 

 Combine all resistors in series. They carry the same current 

 The potential differences across them are not necessarily the same 

 The resistors add directly to give the equivalent resistance of the combination:  

                                     Req = R1 + R2 + … 

 Combine all resistors in parallel 

 The potential differences across them are the same 

 The currents through them are not necessarily the same 

 The equivalent resistance of a parallel combination is found through reciprocal addition: 

 

 

 

 A complicated circuit consisting of several resistors and batteries can often be reduced to a simple 

     circuit with only one resistor 

 Replace resistors in series or in parallel with a single resistor 

 Sketch the new circuit after these changes have been made 

 Continue to replace any series or parallel combinations 

 Continue until one equivalent resistance is found 

 

 

If the current in or the potential difference across a resistor in the 

complicated circuit is to be identified, start with the final circuit and 

gradually work back through the circuits (use formula ΔV = I R and the 

procedures describe above) 

 

 

Example 1: Find the equivalent resistance of the network in the figure below and the current in each resistor. 

The source of emf has negligible internal resistance.  

               Solution:                                                                     

                1. Reduce the parallel resistors 3 and 6;  

                      
1

𝑅
=

1

3
+

1

6
=

1

2
            ∴ 𝑅 = 2 𝛺 

 

 

 

 

 

2. Next get the equivalent series resistor 4 

and 2;  

𝑅𝑒𝑞 = 4 + 2 = 6 𝛺 

 

 

...
111

21


RRReq
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3. The current through the equivalent resistor is 

𝐼 =
𝑉𝑎𝑏

𝑅𝑒𝑞
=

18

6
= 3 𝐴 

 

 

4. The current in the 3 and 6 resistors (parallel resistors) is also 3 A. The potential 

difference 𝑉𝑐𝑏 across the 2𝛺 resistor is therefore 𝑉𝑐𝑏 = 𝐼𝑅 = 3 × 2 = 6 𝑉. This potential 

difference must also be over the 6𝛺.   

 

 

 

5. Thus, the current in the 6𝛺 and 3𝛺 resistors is  

𝐼6 =
6

6
= 1 𝐴 

𝐼3 =
6

3
= 2 𝐴 

 

 

 

Example 2: Two identical light bulbs, each with resistance 𝑅 = 2𝛺 are connected to a source with 𝜀 = 8 𝑉 and 

negligible internal resistance. Find the current through each bulb, the potential difference across each bulb, and 

the power delivered to each bulb and to the entire network if the bulbs are connected  

(a) In series and 

(b) In parallel.  

(c) Suppose one of the bulbs burns out; that is, its filament breaks and current can no longer flow through it. 

What happens to the other bulb in the series case? In the parallel case? 

Solution: 

(a) The equivalent resistors for series combination is  

𝑅𝑒𝑞 = 𝑅1 + 𝑅2 = 2 + 2 = 4𝛺 

            The current is the same in both bulbs 

𝐼 =
𝑉𝑎𝑐

𝑅𝑒𝑞
=

8

4
= 2 𝐴 

            Since the bulbs have the same resistance, the potential difference is the same across each bulb: 

𝑉𝑎𝑏 = 𝑉𝑏𝑐 = 2 × 2 = 4 𝑉 
            The power delivered to each bulb is 

𝑃 = 𝐼2𝑅 = 4 × 2 = 8 𝑊 

            The total power delivered to both bulbs is 

𝑃𝑡𝑜𝑡 = 2𝑃 = 2 × 8 = 16 W 

(b) For the parallel combination the potential difference 𝑉𝑑𝑒 across each 

bulb is the same and equal to 8 V, the terminal voltage of the source. 

Hence the current through each light bulb is  
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 𝐼 =
𝑉𝑑𝑒

𝑅
=

8

2
= 4 𝐴 

and the power delivered to each bulb is 

𝑃 = 𝐼2𝑅 = 16 × 2 = 32 𝑊 

Both the potential difference across each bulb and the current through each 

bulb are twice as great as in the series case. Hence the power delivered to each 

bulb is four times greater, and each bulb is brighter. 

(c) In the series case the same current flows through both bulbs. 

If one bulb burns out, there will be no current in the circuit, and neither bulb 

will glow. 

In the parallel case the potential difference across either bulb is unchanged if a bulb burns out. The current 

through the functional bulb and the power delivered to it are unchanged. 

Kirchhoff’s Rules 
 There are ways in which resistors can be connected so that the circuits formed cannot be reduced to a 

single equivalent resistor 

 Two rules, called Kirchhoff’s Rules can be used instead: 

 1) Junction Rule 

 2) Loop Rule 

 Junction Rule (A statement of Conservation of Charge):  

                                 The sum of the currents entering any     junction must equal the sum of the currents 

leaving that junction 

 Loop Rule (A statement of Conservation of Energy):  

                            The sum of the potential differences across all the elements around any closed circuit loop 

must be zero 

Kirchhoff’s Junction Rule 

 The algebraic sum of the currents into any junction is zero. That is,  ∑ 𝐼 = 0    

        or  𝐼1 = 𝐼2 + 𝐼3  

 Assign symbols and directions to the currents in all branches of the circuit. 

 If a direction is chosen incorrectly, the resulting answer will be negative, but the 

magnitude will  

         be correct 

Kirchhoff’s Loop Rule 
The algebraic sum of the potential differences in any loop, including those associated with emfs and those of resistive  

elements must equal zero. That is   ∑ 𝑉 = 0 

Sign Conventions for the Loop Rule 

 When applying the loop rule, choose a direction for traveling the loop and record voltage drops and rises 

as they occur. 

 Starting at any point in the circuit, we imagine traveling around a loop, adding emfs and IR terms as we 

come to them.  

 If we travel through a resistor in the same direction as the current, 

the potential across the resistor is decreasing (– IR)  
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 If we travel through a resistor is in the direction opposite to the 

current, the potential across the resistor is increasing (+IR)  

 

 

 

 If a source of emf is in the direction of the emf (𝑓𝑟𝑜𝑚 –  𝑡𝑜 +), 

the change in the electric potential is +ε 

 

 

 

 If a source of emf is in the direction opposite to the emf  

(𝑓𝑟𝑜𝑚 +  𝑡𝑜 −), the change in the electric potential is – ε 

 

 

Problem-Solving Strategy 
 Draw the circuit diagram and assign labels and symbols to all known and unknown quantities 

 Assign directions to the currents 

 Apply the junction rule to any junction in the circuit 

 Apply the loop rule to as many loops as are needed to solve for the unknowns 

 Solve the equations simultaneously for the unknown quantities 

 Check your answers 

Example 1: The circuit shown in Figure contains two batteries, each with an emf and an internal resistance, and 

two resistors.  

Find  

(a) The current in the circuit,  

(b) The potential difference and The power output of the emf of each battery 

Solution: 

(a) Starting at 𝑎 and traveling counterclockwise with the current, we add 

potential increases and decreases and equate the sum to zero. Then 

−4𝐼 − 4 − 7𝐼 + 12 − 2𝐼 − 3𝐼 = 0 

                                                 −16𝐼 = 8   

                                                         𝐼 = 0.5 𝐴  
            Positive result for I shows that our assumed current direction is correct 

(b) To find the potential difference 𝑉𝑎𝑏 the potential at a with respect to b, 

we start at b and add potential changes as we go toward a. There are two paths from b to a; Taking the 

upper path from point b to a, we find 

𝑉𝑎𝑏 = 12 − (0.5 × 2) − (0.5 × 3) = 9.5 𝑉 
Here the IR terms are negative because our path goes in the direction of the current, with potential 

decreases through the resistors. 

If we take the lower path from b to a, we find 



46 

2المادة:  الفيزياء                                                                          المرحلة الاولى                
 د. وسام عبدالله لطيف

𝑉𝑎𝑏 = (0.5 × 7) + 4 + (0.5 × 4) = 9.5 𝑉 

The results for 𝑉𝑎𝑏 are the same for both paths, as they must be in order for the total potential change 

around the loop to be zero. 

(c) The power outputs of the emf of the 12-V and 4-V batteries are 

𝑃12 = 𝜀𝐼 = 12 × 0.5 = 6 𝑉 

                                                                     𝑃4 = 𝜀𝐼 = −4 × 0.5 = −2 𝑉 

The negative sign in 𝜀 for the 4-V battery appears because the current actually runs from the higher-

potential side of the battery to the lower-potential side. The negative value of P means that we are 

storing energy in that battery; the 12-V battery is recharging it (if it is in fact rechargeable; otherwise, 

we’re destroying it). 

Example 2: In the circuit shown in the figure below, a 12-V power supply with unknown internal resistance r is 

connected to a run-down rechargeable battery with unknown emf 𝜀 and internal resistance 1𝛺 and 

to an indicator light bulb of resistance 3𝛺 carrying a current of 2 A. The current through the run-

down battery is 1 A in the direction shown.  

Find r, emf  , and the current I through the power supply. 

 

 
Solution: We apply the junction rule to point a 

 

−𝐼 + 1 + 2 = 0 

∴ 𝐼 = 3𝐴 
To determine r, we apply the loop rule to the large, outer loop (1): 

12 − 3𝑟 − 2 × 3 = 0 

∴ 𝑟 = 2 𝛺 

To determine 𝜀 we apply the loop rule to the left-hand loop (2): 

−𝜀 + (1𝐴 × 1𝛺)-(2𝐴 × 3𝛺) = 0 

∴ 𝜀 = −5𝑉 

The negative value for 𝜀 shows that the actual polarity of this emf is opposite to that shown in the figure, the 

battery is being recharged 

 

 

Example 3: The figure shows a “bridge” circuit. Find the current in each resistor and the equivalent resistance of 

the network of five resistors 
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Solution: We apply the loop rule to the three loops shown: 

 
Solve these simultaneous equations for the currents; 

From eqn. (3)     𝐼2 = 𝐼1 + 𝐼3  and then substitute this expression into Eq. (2) to eliminate𝐼2 . We then have  

 

−(𝐼1 + 𝐼3) − 2(𝐼1 + 𝐼3) − 2𝐼3 + 13 = 0 

3𝐼1 + 5𝐼3 = 13                       (4) 

From eqn. (1)                   2𝐼1 −  𝐼3 = 13                                                                  (1’)     × 5 

13𝐼1 = 78 

∴ 𝐼1 = 6𝐴 

substitute this result into Eqn. (1’)                               𝐼3 = −1A 

And from Eqn. (3) we find                                           𝐼2 = 5𝐴  

The negative value of 𝐼3 shows that its direction is opposite to the direction we assumed. The total current 

through the network is 𝐼1 + 𝐼2 = 11𝐴. And the potential drop across it is equal to the battery emf, 13 V. The 

equivalent resistance of the network is therefore 

𝑅𝑒𝑞 =
13

11
= 1.2 𝛺 

Example 4: use the results from example 3 to find the potential difference 𝑉𝑎𝑏 

 

 

 

 

 

 

 

 

 

 

Solution: 𝑉𝑎𝑏 = 𝑉𝑎 − 𝑉𝑏 is the potential at point a with respect to point b. To find it, we start at point b and 

follow a path to point a, adding potential rises and drops as we go. We can follow any of several paths from b to 

a; the result must be the same for all such paths, which gives us a way to check our result. 

The simplest path is through the center 1𝛺 resistor.  

In Example 3 we found  𝐼3 =  − 1 𝐴, showing that the actual current direction through this resistor is 

from right to left.  
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Thus, as we go from b to a, there is a drop of potential with magnitude 

 𝑉𝑎𝑏 = 𝐼3𝑅 = −1 × 1 = −1 𝑉,  

The potential at a is 1 V less than at point b. 

  
 

Lecture 8:  RC circuits 

RC Circuits 
 

A circuit that has a resistor and a capacitor in series is called an R-C circuit. 

 Capital letters: V, Q, I (constant) 

 Lowercase letters: v, i, q (vary with time) 

 Charging a Capacitor: 

(a) Because the capacitor is initially uncharged, the potential difference 

𝑣𝑏𝑐 = 0 at 𝑡 = 0. at this time, from Kirchhoff’s loop law, the voltage 𝑣𝑎𝑏 

across the resistor R is equal to the battery emf  𝜺. The current through 

the resistor is given by Ohm’s law 

𝐼0 = 𝑣𝑎𝑏 𝑅 = 𝜀 𝑅⁄⁄  
 

 

 

 

(b) As the capacitor charges, its voltage 𝑣𝑏𝑐 increases and 𝑣𝑎𝑏decreases.  

At an intermediate time, t, let q represent the charge on the capacitor, then, 

the instantaneous potential differences  

𝑣𝑎𝑏 = 𝑖𝑅 
   𝑣𝑏𝑐 = 𝑞/𝐶 

Using these in Kirchhoff’s loop rule, we find that The potential drops by an 

amount iR as we travel from a to b and by 𝑞 𝐶⁄  as we travel from b to c. 
 

 

As the charge q increases, the term 𝑞 𝑅𝐶⁄  becomes larger and the capacitor charge approaches its final value 𝑄𝑓. 

The current decreases and eventually becomes zero. When 𝑖 = 0 
𝜀

𝑅
=

𝑄𝑓

𝑅𝐶
 , so  𝑄𝑓 = 𝐶𝜀 

Note that the final charge does not depend on R. 

𝑖 =
𝑑𝑞

𝑑𝑡
=

𝜀

𝑅
−

𝑞

𝑅𝐶
= −

1

𝑅𝐶
(𝑞 − 𝐶𝜀) 

𝑑𝑞

𝑞 − 𝐶𝜀
= −

1

𝑅𝐶
 

∴ 𝜀 − 𝑖𝑅 −
𝑞

𝐶
= 0 ∴ 𝑖 =

𝜀

𝑅
−

𝑞

𝑅𝐶
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and then integrate both sides. We change the integration variables to q’ and t’  so that we can use q and t for the 

upper limits. The lower limits are 𝑞’ = 0 and 𝑡’ = 0 

∫
𝑑𝑞′

𝑞′ − 𝐶𝜀
= − ∫

𝑑𝑡′

𝑅𝐶

𝑡

0

𝑞

0

 

𝑙𝑛 (
𝑞 − 𝐶𝜀

−𝐶𝜀
) = −

𝑡

𝑅𝐶
 

 

Taking the exponential of both sides and solving for q 

𝑞 − 𝐶𝜀

−𝐶𝜀
= 𝑒−

𝑡
𝑅𝐶 

 

 

 

 

The instantaneous current i is just the time derivative of q 

 

 
 

Time Constant 
After a time equal to RC, the current in the R-C circuit has decreased to 1/𝑒  (about 0.368) of its initial value. At 

this time, the capacitor charge has reached (1 − 1/𝑒) = 0.632 of its final value  𝑄𝑓. The product RC is 

therefore a measure of how quickly the capacitor charges. We call RC the time constant or the relaxation time 

of the circuit, denoted by 𝜏;   

𝜏 = 𝑅𝐶 

 

 
 
 

                                                                                                          

∴ 𝑞 = 𝐶𝜀 (1 − 𝑒−
𝑡

𝑅𝐶) = 𝑄𝑓 (1 − 𝑒−
𝑡

𝑅𝐶) 

∴ 𝑞 = 𝐶𝜀 (1 − 𝑒−
𝑡

𝑅𝐶) = 𝑄𝑓 (1 − 𝑒−
𝑡

𝑅𝐶) 
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    Discharging a Capacitor: 
Now suppose that after the capacitor in (a) has acquired a charge 𝑄0 we remove the battery 

from our R-C circuit and connect points a and c to an open switch. 

 

 

 

 

 

We then close the switch and at the same instant reset the time to 𝑡 = 0 at that time, 

the capacitor then discharges through the resistor, and its charge eventually decreases 

to zero. 
 

Again let i and q represent the time-varying current and charge at some instant after 

the connection is made. We make the same choice of the positive direction for 

current. Then Kirchhoff’s loop rule with 𝜀 = 0  now gives: 
 

 

 

 

The current i is now negative; this is because positive charge q is leaving the left 

hand capacitor plate, so the current is in the direction opposite to the charge direction 

 

At time 𝑡 = 0, 𝑞 = 𝑄0, the initial current is 𝐼0 = −𝑄0 𝑅𝐶⁄ . 

To find q as a function of time, again change the limits to q’ and t’ and integrate  

 

                                                                       𝑙𝑛
𝑞

𝑄0
= −

𝑡

𝑅𝐶
     

 

 

The instantaneous current i is 

 

 

 

 

 

 

                                               

 

                                            

 

 

 

0 = 𝑣𝑎𝑏 + 𝑣𝑏𝑐  

𝑣𝑎𝑏 = 𝑖𝑅 𝑣𝑏𝑐 =
𝑞

𝐶
 ∴ 𝑖 =

𝑑𝑞

𝑑𝑡
= −

𝑞

𝑅𝐶
 

∫
𝑑𝑞

𝑞′
= −

1

𝑅𝐶
∫ 𝑑𝑡′

𝑡

0

𝑞

𝑄0

 𝑞 = 𝑄0𝑒−
𝑡

𝑅𝐶  

𝑖 =
𝑑𝑞

𝑑𝑡
= −

𝑄0

𝑅𝐶
𝑒−

𝑡
𝑅𝐶 = 𝐼0𝑒−

𝑡
𝑅𝐶 

𝑞 = 𝑄0𝑒−
𝑡

𝑅𝐶  



51 

2المادة:  الفيزياء                                                                          المرحلة الاولى                
 د. وسام عبدالله لطيف

 

 

During charging:  
The instantaneous rate at which battery delivers energy to circuit  

𝜀𝑖 = 𝑖2𝑅 +
𝑖𝑞

𝐶
 

𝑖2𝑅 =  𝑝𝑜𝑤𝑒𝑟 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑 𝑖𝑛 𝑅 

𝑖𝑞/𝐶 =  𝑝𝑜𝑤𝑒𝑟 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝐶 

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 𝑏𝑎𝑡𝑡𝑒𝑟𝑦:  𝜀𝑄𝑓  

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟:  𝑄𝑓 𝜀/2 

Electrical Measuring Instruments 

 

Ammeter: device that measures current, (𝑅 =  0) 

 It can be adapted to measure currents larger than its full scale 

range by connecting 𝑅𝑠ℎ (shunt resistor) in parallel (some I 

bypasses meter coil). 

 

 

 

𝐼𝑓𝑠 = current through coil 

𝐼𝑠ℎ = current through 𝑅𝑠ℎ 

𝐼𝑎   = current measured by ammeter 

The potential difference 𝑉𝑎𝑏 is the same for both paths, so 

 

 

 

 
Example: What shunt resistance is required to make the 1𝑚𝐴, 20Ω meter described above into an ammeter with 

a range of 0 to 50 𝑚𝐴? 

Solution: 𝐼𝑓𝑠 = 1 × 10−3𝐴,      𝐼𝑎 = 50 × 10−3𝐴,    𝑅𝑐 = 20𝛺 
 

𝐼𝑓𝑠𝑅𝑐 = (𝐼𝑎 − 𝐼𝑓𝑠)𝑅𝑠ℎ 

 

𝑅𝑠ℎ =
𝐼𝑓𝑠𝑅𝑐

(𝐼𝑎 − 𝐼𝑓𝑠)
=

1 × 10−3 × 20

(50 − 1) × 10−3
= 0.408𝛺 

Voltmeter: device that measures voltage, (𝑅 =  ∞) 

 It can be adapted to measure voltages larger than its full scale range by 

connecting 𝑅𝑠 in series with the coil. 

𝑉𝑣 = 𝑉𝑎𝑏 = 𝐼𝑓𝑠(𝑅𝑐 + 𝑅𝑠) 

Example: What series resistance is required to make the 1. 𝑚𝐴, 20Ω meter 

described above into a voltmeter with a range of 0 to 10 𝑉?  

Solution: 

𝑅𝑠 =
𝑉𝑣

𝐼𝑓𝑠
− 𝑅𝑐 =

10

1 × 10−3
− 20 = 9980𝛺 

 

𝐼𝑎 = 𝐼𝑠ℎ + 𝐼𝑓𝑠  

𝐼𝑓𝑠𝑅𝑐 = 𝐼𝑠ℎ𝑅𝑠ℎ  

𝑉𝑎𝑏 = 𝐼𝑓𝑠𝑅𝑐 = (𝐼𝑎 − 𝐼𝑓𝑠)𝑅𝑠ℎ 
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Ohmmeter: device that measures resistance. 

 The series resistance 𝑅𝑠 is adjusted so that when the terminals x-y are 

short-circuited (𝑅 =  0), the meter deflects full scale (zero). When 

nothing is  connected between x-y (open circuit, 𝑅 =  ∞) there is no 

current (no deflection). For intermediate 𝑅  values, meter scale is 

calibrated to read R. 
 

 

 

 

 

 

 

 

 

 

 

 

Potentiometer: device that measures emf of a source  without drawing any current from it. 

 𝑅𝑎𝑏 connected to terminals of known emf (𝜀1). A sliding contact (c) is 

connected through galvanometer (G) to unknown source (𝜀2). As 

contact (c) is moved along 𝑅𝑎𝑏 , 𝑅𝑐𝑏varies proportional to wire length 

(c-b). To find 𝜀2

  
(c) is moved until G shows no deflection (𝐼𝐺 =  0): 
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Lecture 9. Magnetic field and magnetic forces 
 

Magnetism: 

 Magnets exert forces on each other just like charges. You can draw magnetic field lines just like you 

drew electric field lines. 

 Magnetic north and south pole’s behavior is similar to electric charges. For magnets, like poles repel and 

opposite poles attract. 

 A permanent magnet will attract a metal like iron with either the north or south pole. 

               

The earth’s magnetic field  
 

  Magnetic declination / magnetic variation: the Earth’s 

magnetic axis is not parallel to its geographic axis (axis of 

rotation) a compass reading     deviates from geographic north. 

 

 Magnetic inclination: the magnetic field is not horizontal at 

most of earth’s surface, its angle up or down. The magnetic 

field is vertical at magnetic poles. 

 

MAGNETIC FIELD LINES  
 

We can represent any magnetic field by magnetic field lines, just as 

we did for the earth’s magnetic field. The idea is the same as for the electric 

field lines. We draw the lines so that the line through any point is tangent to 

the magnetic field vector at that point as shown in the figure. Just as with 

electric field lines, we draw only a few representative lines; otherwise, the 

lines would fill up all of space. Where adjacent field lines are close together, 

the field magnitude is large; where these field lines are far apart, the field 

magnitude is small. Also, because the direction of at each point is unique, 

field lines never intersect. 
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Magnetic Poles versus Electric Charge 
 

 We observed monopoles in electricity. A (+) or (-) alone was stable, and 

field lines could be drawn around it. 

 Magnets cannot exist as monopoles. If you break a bar magnet between 

N and S poles, you get two smaller magnets, each with its own N and S 

pole.  

 

 

 

        Electric field                                                Magnetic field  

 

                                                                                

 

 

 

 The magnetic field is a vector field vector quantity associated with each point in space. 

 

𝐹𝑚 = |𝑞|𝑣⏊𝐵 = |𝑞|𝑣𝐵𝑠𝑖𝑛𝜑 

𝑭𝒎 = |𝑞|𝒗 × 𝑩 

 𝑭𝒎 is always perpendicular to B and v. 

 

Interaction of magnetic force and charge 

The moving charge interacts with the fixed magnet. The force between them is at a maximum when the velocity 

of the charge is perpendicular to the magnetic field. 

                  

 

 

 

1) A distribution of electric charge 

at rest creates an electric field E in 

the surrounding space. 

1) A moving charge or current 

creates a magnetic field in the 

surrounding space (in addition to E). 

2) The electric field exerts a force 

𝑭𝑬 =  𝑞 𝑬    on any other charges 

in presence of that field. 

2) The magnetic field exerts a force 

𝑭𝒎 = 𝑞𝒗 × 𝑩  on any other moving 

charge or current present in that 

field.  
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Right Hand Rule 
 

                                                

Units: 1 𝑇𝑒𝑠𝑙𝑎 =  1 𝑁 𝑠 / 𝐶 𝑚 =  1 𝑁/𝐴 𝑚 

1 𝐺𝑎𝑢𝑠𝑠 =  10−4 𝑇 
 

 Two charges of equal magnitude but opposite signs moving in the 

same direction in the same field will experience force in opposing 

directions. 

If charged particle moves in region where both, E and B are present: 

 

𝑭 = 𝑞(𝑬 + 𝒗 × 𝑩) 

 

 

 

 

Example: A beam of protons (𝑞 = 1.6 × 10−19𝐶) moves at 3 × 105𝑚/𝑠 through a uniform 2-T magnetic field 

directed along the positive z-axis. The velocity of each proton lies in the xz-plane and is directed at 300 to the 

positive z-axis. Find the force on a proton. 

Solution: The charge is positive, so the force is in the same direction as the vector 

product 𝒗 × 𝑩. From the right-hand rule, this direction is along the negative y-

axis.  

                        𝐹 = 𝑞𝑣𝐵𝑠𝑖𝑛𝜑 

𝐹 = 1.6 × 10−19 × 3 × 105 × 2 × sin 30 

                            = 4.8 × 10−14𝑁 
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Magnetic Field Lines and Magnetic Flux 

 

 Magnetic field lines may be traced from N toward S 

(analogous to the electric field lines). 

 At each point they are tangent to magnetic field vector. 

 The more densely packed the field lines, the stronger the 

field at a point. 

 Field lines never intersect. 

 The field lines point in the same direction as a compass 

(from N toward S). 

 Magnetic field lines are not “lines of force”. 

  Magnetic field lines have no ends, so they continue through the interior of the magnet.  

Magnetic Flux and Gauss’s Law for Magnetism 

We define the magnetic flux 𝝓𝑩 through a surface just as we defined electric flux in connection with 

Gauss’s law. We can divide any surface into elements of area 𝑑𝐴. For each element we determine 𝐵⏊ the 

component of B normal to the surface at the position of that element, as shown in the figure below. From the 

figure 𝐵⏊ = 𝐵𝑐𝑜𝑠𝜑, where 𝜑 is the angle between the direction of B and a line perpendicular to the surface. We 

define the magnetic flux 𝑑𝜙𝐵 through this area as  

 

The total magnetic flux through the surface is the sum of the 

contributions from the individual area elements: 

 

 Magnetic flux is a scalar quantity. 

 If B is uniform, then 

𝜙𝐵 = 𝐵⏊𝐴 = 𝐵𝐴𝑐𝑜𝑠𝜑 

 If B happens to be perpendicular to the surface, then 𝜑 = 0 𝑐𝑜𝑠𝜑 = 1 and 

                                       𝜙𝐵 = BA  

 The SI unit of magnetic flux is equal to the unit of magnetic field (1 T) times the unit of area This 

unit is called the weber        1 𝑊𝑏 = 1𝑇. 𝑚2 = 1𝑁. 𝑚/𝐴 

 The total magnetic flux through a closed surface is always zero.  This is because there 

is no isolated magnetic charge (“monopole”) that can be enclosed by the Gaussian 

surface.  

∮ 𝐵 ∙ 𝑑𝐴 = 0 
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Motion of charged particles in a magnetic field 

 When a charged particle moves in a magnetic field, it is acted on by the magnetic force  

(𝑭𝒎 = 𝑞𝒗 × 𝑩) and the motion is determined by Newton’s laws. 

 The force is perpendicular to the velocity, so the charged particle experiences an acceleration that is 

perpendicular to the velocity. 

 The magnitude of the velocity does not change, but the direction of the velocity does producing 

circular motion. 

 The magnetic force does no work on the particle. 

 The magnetic force produces circular motion with the centripetal acceleration being given by 

𝑎 =
𝑣2

𝑅
 

                   where R is the radius of the orbit 

 Using Newton’s second law we have 

𝐹𝑚 = 𝑞𝑣𝐵 = 𝑚
𝑣2

𝑅
 

 The radius of the orbit is then given by 

𝑅 =
𝑚𝑣

𝑞𝐵
 

                                   +𝑞             Counter-clockwise rotation. 

                                   −𝑞             Clockwise rotation. 

 The angular speed ω is given by 

𝜔 =
𝑣

𝑅
=

𝑞𝐵

𝑚
 

 The frequency 

                                        𝑓 =
𝜔

2𝜋
 

 What is the motion like if the velocity is not perpendicular to B? 

 We break the velocity into components along the magnetic field 

and perpendicular to the magnetic field. 

 The component of the velocity perpendicular to the magnetic field 

will still produce circular motion. 

 The component of the velocity parallel to the field produces no 

force and this motion is unaffected 

 The combination of these two motions results in a helical type 

motion 

 

Example 1: A magnetron in a microwave oven emits electromagnetic waves with frequency𝑓 = 2450 𝑀𝐻𝑧. 

What magnetic field strength is required for electrons to move in circular paths with this frequency? 

 𝑚𝑒 = 9.11 × 10−31𝑘𝑔 



59 

2المادة:  الفيزياء                                                                          المرحلة الاولى                
 د. وسام عبدالله لطيف

Solution: The angular speed that corresponds to the frequency 

𝜔 = 2𝜋𝑓 = 2𝜋 × 2450 × 106 = 1.54 × 1010𝑠−1 

𝜔 =
𝑞𝐵

𝑚
 

∴ 𝐵 =
𝑚𝜔

𝑞
=

9.11 × 10−31 × 1.54 × 1010

1.6 × 10−19
= 0.0877 𝑇 

Example 2: In a situation like that shown in the figure, the charged particle is a proton(𝑞 = 1.6 ×

10−19𝐶,  𝑚 = 1.67 × 10−27𝑘𝑔) and the uniform, 0.5𝑇 magnetic field is directed along the x-axis. At  𝑡 = 0 the 

proton has velocity components 𝑣𝑥 = 1.5 × 105𝑚/𝑠, and 𝑣𝑦 = 0, 𝑣𝑧 = 2 × 105𝑚/𝑠. Only the magnetic force 

acts on the proton.  

(a) At 𝑡 =  0, find the force on the proton and its acceleration.  

(b) Find the radius of the resulting helical path, the angular speed of the proton, and the pitch of the 

helix (the distance traveled along the helix axis per revolution). 

Solution: (a) 𝑩 = 𝐵𝒊 and 𝒗 = 𝒗𝒙𝒊 + 𝒗𝒛𝒌    
𝑭 = 𝑞𝒗 × 𝑩 = 𝒒(𝒗𝒙𝒊 + 𝒗𝒛𝒌) × 𝐵𝒊 

Recall 𝒊 × 𝒊 = 0 and 𝒌 × 𝒊 = 𝒋  

∴ 𝐹 = 𝑞𝑣𝑧𝐵𝒋 

        = (1.6 × 10−19)(2 × 105)(0.5) 

        = (1.6 × 10−14)𝒋 

From Newton 2
nd

 law, the resulting acceleration is 

𝒂 =
𝑭

𝑚
=

1.6 × 10−14

1.67 × 10−27
= (9.58 × 1012)𝒋 

(b) Since 𝑣𝑦 = 0, the component of velocity perpendicular to B is 𝑣𝑧, then the radius R is 

𝑅 =
𝑚𝑣𝑧

|𝑞|𝐵
=

(1.67 × 10−27)(2 × 105)

(1.6 × 10−19)(0.5)
 

= 4.18 × 10−3𝑚 = 4.18 𝑚𝑚 

 The angular speed is 

𝜔 =
|𝑞|𝐵

𝑚
=

(1.6 × 10−19)(0.5)

1.67 × 10−27
= 4.79 × 107𝑟𝑎𝑑/𝑠 

 The period is  

𝑇 =
2𝜋

𝜔
=

2𝜋

4.79 × 107
= 1.31 × 10−7𝑠 

 The pitch is the distance traveled along the x-axis in this time, 

𝑣𝑥𝑇 = (1.5 × 105)(1.31 × 10−7) = 19.7 𝑚𝑚 
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Lecture 10.  Applications of Charged Particles Motion 
 

 Velocity Selector 

An interesting device can be built that uses both magnetic and electric fields that are perpendicular to each 

other. 

A charged particle entering this device with a velocity v will experience both an electric force 𝐹𝐸 = 𝑞𝐸 and a 

magnetic force 𝐹𝐵 = 𝑞𝑣𝐵 

If the particle is positively charged then the magnetic force on the 

particle will be to the right and the electric force will be to the left. If the 

velocity of the charged particle is just right then the net force on the 

charged particle will be zero ∑ 𝐹 = 𝐹𝐵 − 𝐹𝐸 = 0 

  ∑ 𝐹 = 𝐹𝐵 − 𝐹𝐸 = 0 

∴ 𝑞𝑣𝐵 = 𝑞𝐸 

∴ 𝑣 =
𝐸

𝐵
 

 

 Only particles with speeds equal to can pass through 

without being deflected by the fields.  

 By adjusting E and B appropriately, we can select 

particles having a particular speed for use in other 

experiments. Because q cancels out , a velocity 

selector for positively charged particles also works 

for electrons or other negatively charged particles. 

 

 

 Thomson’s e/m Experiment 

In a highly evacuated glass container, electrons from the 

hot cathode are accelerated and formed into a beam by a 

potential difference V between the two anodes A and A’. 

The speed v of the electrons is determined by the 

accelerating potential V. The gained kinetic energy 
1

2
𝑚𝑣2 

equals the lost electric potential energy eV where e is the 

magnitude of the electron charge: 

 

 

1

2
𝑚𝑣2 = 𝑒𝑉  or   𝑣 = √

2𝑒𝑉

𝑚
 



61 

2المادة:  الفيزياء                                                                          المرحلة الاولى                
 د. وسام عبدالله لطيف

The electrons pass between the plates P and P’ and strike the screen at the end of the tube, which is coated with 

a material that fluoresces (glows) at the point of impact. The electrons pass straight through the plates when Eq. 

𝑣 = 𝐸 𝐵 ⁄ is satisfied. Therefore,  

 

  

                                               

All the quantities on the right side can be measured, so the ratio 𝑒 𝑚⁄  of charge to mass can be determined. 

The most precise value of available as of this writing is 

 

 

 Mass Spectrometer 

Using the same concept as Thompson, Positive ions from a source pass 

through the slits S1and S2 forming a narrow beam. Then the ions pass through 

a velocity selector with crossed E and B fields. Finally, the ions pass into a 

region with a magnetic field perpendicular to the figure, where they move in 

circular arcs with radius R determined by  𝑅 = 𝑚𝑣 𝑞𝐵′⁄  the values of  R can be 

measured. We assume that each ion has lost one electron, so the net charge of 

each ion is just  +𝑒 .  

With everything known in this equation except  𝑚 we can compute the mass of 

the ion. 𝑣 =  𝐸/𝐵.  After this, in the region of B’ particles with m2 > m1 

travel with radius (R2 > R1). 

 

Example: You set out to reproduce Thomson’s 𝑒 𝑚 ⁄ experiment with                  

and an accelerating potential of 150 𝑉 and a 

deflecting electric field of magnitude 6 × 106 𝑁/𝐶  

(a) At what fraction of the speed of light do the electrons move?  

(b) What magnetic-field magnitude will yield zero beam 

deflection?  

Solution: (a) The electron speed is given by 

𝑣 = √
2𝑒𝑉

𝑚
= √2 × (1.76 × 1011) × 150 = 7.27 × 106 𝑚/𝑠 

𝑣

𝑐
=

7.27 × 106

3 × 108
= 0.027 

Therefore the electron moves with 0.027 of speed of light.  

𝐵 =
𝐸

𝑣
=

6 × 106

7.27 × 106
= 0.83 𝑇 

 

 

𝐸

𝐵
= √

2𝑒𝑉

𝑚
 

𝑒

𝑚
=

𝐸2

2𝑉𝐵2
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Magnetic Force on a Current-Carrying Conductor 

 The average magnetic force on a single moving charge is 

 

 Since v and B are perpendicular, the magnitude of the force is 

 

 

 The total force on all the moving charges in a length l of conductor with 

cross-sectional area A  

 

 Where Al is the volume of the conductor and n is the number of charges per 

unit volume. 

The current density is  𝐽 =
𝐼

𝐴
= 𝑛𝑞𝑣𝑑                  𝐼 = 𝐴𝑛𝑞𝑣𝑑 

 

 If the field B is not perpendicular to the wire but makes an angle 𝜑 with it. 

Then, only the component of  B perpendicular to the wire (and to the drift 

velocities of the charges) exerts a force; this component is 𝑩⏊𝑠𝑖𝑛𝜑. The 

magnetic force on the wire segment is then 

 

 The force is always perpendicular to both the conductor and the field, with 

the direction determined by the same right-hand rule 

 

 

 
Hence this force can be expressed as a vector product, just like the force on a single moving charge. We 

represent the segment of wire with a vector l along the wire in the direction of the current; then the force on this 

segment is 
 

 The direction of l is the direction of the current 

If the conductor is not straight, we can divide it into infinitesimal dl segments. The force dF on each segment is 
 

𝑭𝒎 = 𝑞𝑣𝑑 × 𝑩 

𝐹𝑚 = 𝑞𝑣𝐵 

𝐹 = (𝑛𝑙𝐴)(𝑞𝑣𝑑𝐵) 

∴ 𝐹 = 𝐼𝑙𝐵 

𝐹 = 𝐼𝑙𝐵⏊ = 𝐼𝑙𝐵𝑠𝑖𝑛𝜑 

𝑭 = 𝐼𝒍 × 𝑩 

𝑑𝑭 = 𝐼 𝑑𝒍 × 𝑩 
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Example on Magnetic force on a straight conductor 

A straight horizontal copper rod carries a current of 50.0 𝐴 from 

west to east in a region between the poles of a large 

electromagnet. In this region there is a horizontal magnetic field 

toward the northeast (that 

is, 45° north of east) with magnitude 1.20 T.  

(a) Find the magnitude and direction of the force on a 1 𝑚 

section of rod.  

(b) While keeping the rod horizontal, how should it be oriented 

to maximize the magnitude of the force? What is the force magnitude in this case? 

Solution: (a) The angle between the directions of current and field is 45°.  

𝐹 = 𝐼𝑙𝐵𝑠𝑖𝑛𝜑 = 50 × 1 × 1.2 × 𝑠𝑖𝑛450 = 42.4 𝑁 

The direction of the force is perpendicular to the plane of the current and the field, both of which lie in the 

horizontal plane. Thus the force must be vertical; the right-hand rule shows that it is vertically upward (out of 

the plane of the figure).  
 

 

 

 

Example on Magnetic force on a curved conductor 

In the figure below the magnetic field B is uniform and perpendicular to 

the plane of the figure, pointing out of the page. The conductor, carrying 

current I to the left, has three segments: (1) a straight segment with 

length L perpendicular to the plane of the figure, (2) a semicircle with 

radius R, and (3) another straight segment with length L parallel to the x-

axis. Find the total magnetic force on this conductor. 
 

Solution: For segment (1), 𝑳 = −𝐿𝒌. Hence 𝑭1 = 𝐼𝑳 × 𝑩 = 0.   For segment (3), 𝑳 = −𝐿𝒊 so 𝑭3 = 𝐼𝑳 × 𝑩 =

𝐼(−𝐿𝒊) × (𝐵𝒌) = 𝐼𝐿𝐵𝒋. For the curved segment (2), the figure shows a segment dl with length 𝑑𝑙 = 𝑅 𝑑𝜃 , at 

angle 𝜃. The right-hand rule shows that the direction of 𝑑𝒍 × 𝑩 ,  is radially outward from the center. Because 

𝑑𝒍 and 𝑩 are perpendicular, the magnitude 𝑑𝑭2 of the force on the segment is just  𝑑𝐹2 = 𝐼 𝑑𝑙 𝐵 = 𝐼(𝑅 𝑑𝜃)𝐵 . 

The components of the force on this segment are  

                      𝑑𝐹2𝑥 = 𝐼 𝑅𝑑𝜃 𝐵𝑐𝑜𝑠𝜃           𝑑𝐹2𝑦 = 𝐼 𝑅𝑑𝜃 𝐵𝑠𝑖𝑛𝜃 

𝐹  
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To find the components of the total force, we integrate these expressions with respect to 𝜃 from  𝜃 = 0 to 𝜃 = 𝜋 

to take in the whole semicircle. The results are 

                        𝐹2𝑥 = 𝐼𝑅𝐵 ∫ 𝑐𝑜𝑠𝜃 𝑑𝜃 = 0
𝜋

0
                          𝐹2𝑦 = 𝐼𝑅𝐵 ∫ 𝑠𝑖𝑛𝜃 𝑑𝜃 = 2𝐼𝑅𝐵

𝜋

0
 

Hence, 𝑭2 = 2𝐼𝑅𝐵𝒋 . Finally, adding the forces on all three segments, we find that the total force is in the 

positive y-direction: 

𝑭 = 𝑭1 + 𝑭𝟐 + 𝑭𝟑 = 0 + 2𝐼𝑅𝐵𝒋 + 𝐼𝐿𝐵𝒋 = 𝐼𝐵(2𝑅 + 𝐿)𝒋 
 

Force and Torque on a Current Loop 

As an example, let’s look at a rectangular current loop in a uniform magnetic field. We can represent the loop as 

a series of straight line segments. We will find that the total force on the loop is zero. 

 

 The force on the right side of the loop (length a) is to the right, in the +𝑥 –direction. B is 

perpendicular to the current direction,   

 

 A force – 𝑭 with the same magnitude but opposite direction acts on the opposite side of the loop, as 

shown in the figure. 

 

 The sides with length b make an angle (90 − 𝜑)with the direction of B . The forces on these sides 

are the vectors F’ and −𝑭’ their magnitude is given by 

 

 The lines of action of both forces lie along the y-axis  

𝐹 = 𝐼𝑎𝐵 

x 

z 

𝐹′ = 𝐼𝑏𝐵𝑠𝑖𝑛(900 − 𝜑) = 𝐼𝑏𝐵𝑐𝑜𝑠𝜑 
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 The net force on a current loop in a uniform magnetic field is zero. 

 However, the net torque is not in general equal to zero.  

 

          In general  
 

 

 

 

 

The two forces F’ and −𝑭’ lie along the same line and so give rise to zero net torque with respect to any point. 

∴ 𝜏𝑛𝑒𝑡 = 𝜏𝐹′ + 𝜏−𝐹′ + 𝜏𝐹 + 𝜏−𝐹 = 0 + 0 + 2
𝑏

2
(𝐼𝑎𝐵 )𝑠𝑖𝑛𝜑 

                                             = 𝐼𝑎𝐵𝑏𝑠𝑖𝑛𝜑 

 

φ is angle between a vector perpendicular to loop and B 
 

 

 

 

 

The area of the loop is equal to ab so we can rewrite the magnitude of torque on a current loop as 
 

 The product IA is called the magnetic dipole moment or 

magnetic moment of the loop, for which we use the symbol 𝜇 

 

 Magnetic torque 

𝑭𝒏𝒆𝒕 = 𝑭 − 𝑭 + 𝑭′ − 𝑭′ = 𝟎 

𝝉 = 𝒓 × 𝑭 = 𝑟⏊𝐹 = 𝑟𝐹⏊ 

          = 𝑟 𝐹𝑠𝑖𝑛𝜑 

𝜏𝐹 =
𝑏

2
 𝐹𝑠𝑖𝑛𝜑 =

𝑏

2
(𝐼𝑎𝐵 )𝑠𝑖𝑛𝜑 

𝜏−𝐹 =
𝑏

2
 𝐹𝑠𝑖𝑛𝜑 =

𝑏

2
(𝐼𝑎𝐵 )𝑠𝑖𝑛𝜑 

 The torque is greatest when 𝜑 = 900  

 The torque is zero when 𝜑 = 0 𝑜𝑟 1800  

𝜏 = 𝐼𝐴𝐵𝑠𝑖𝑛𝜑 

𝜇 = 𝐼𝐴 

∴ 𝜏𝑡𝑜𝑡 = 𝜇𝐵𝑠𝑖𝑛𝜑 
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Direction: (Right Hand Rule) determines the direction of the magnetic moment of a current-

carrying loop 𝝁. This is also the direction of the loop’s area vector A. 
 Potential Energy for a Magnetic Dipole: 

 The torque on an electric dipole in an electric field is 𝝉 = 𝒑 × 𝑬, we found that the corresponding 

potential energy is 𝑼 = −𝒑 ∙ 𝑬 .  

 The torque on a magnetic dipole in a magnetic field is 𝝉 = 𝝁 × 𝑩, so we can conclude immediately 

that the corresponding potential energy is 𝑼 = −𝝁 ∙ 𝑩 = −𝜇𝐵𝑐𝑜𝑠𝜑 

With this definition, 𝑼 is zero when the magnetic dipole moment is perpendicular to the magnetic field. 

Solenoid 

An arrangement of particular interest is the solenoid, a helical winding of wire, 

such as a coil wound on a circular cylinder. If the windings are closely spaced, the 

solenoid can be approximated by a number of circular loops lying in planes at right 

angles to its long axis. The total torque on a solenoid in a magnetic field is simply the 

sum of the torques on the individual turns. For a solenoid with N turns with uniform 

field B, the magnetic moment is 𝑁𝐼𝐴 and 
 

where 𝜑 is the angle between the axis of the solenoid and the direction of the field. The 

magnetic moment vector 𝜇 is along the solenoid axis. 
 

Example: A circular coil 0.05 m in radius, with 30 turns of wire, lies in a horizontal plane. It carries a 

counterclockwise (as viewed from above) current of 5 A. The coil is in a uniform 1.2-T magnetic field directed 

toward the right. Find the magnitudes of the magnetic moment and the torque on the coil. 
 

Solution: The area of the coil is 𝐴 = 𝜋𝑟2. The total magnetic moment of all 30 turns is 
 

The angle between the direction of and the direction of 

(which is along the normal to the plane of the coil) is 900. 

The torque on the coil is  

𝜏 = 𝜇𝑡𝑜𝑡𝐵𝑠𝑖𝑛 𝜑 = 1.18 × 1.2 × sin 900 

                                                     = 1.41 𝑁. 𝑚 

 

 

The Hall Effect 

 The Hall effect: A current through a conducting material will develop a transverse voltage (Hall 

voltage) when the material is placed in a B-field. 

  The concept is similar to the velocity selector except that the electric field (“the Hall voltage) is 

generated by the deflected charge carriers rather than an external E-field. 

𝝉 = 𝝁 × 𝑩 

𝜏 = 𝑁𝐼𝐴𝐵𝑠𝑖𝑛𝜑 

𝜇𝑡𝑜𝑡 = 𝑁𝐼𝐴 = 30 × 5 × 𝜋(0.05)2 = 1.18 𝐴. 𝑚2 
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In the steady state, when the forces 𝐹𝐸 = 𝑞𝐸𝑧 and 𝐹𝐵 = 𝑞𝑣𝑑𝐵𝑦 are equal in magnitude and opposite in direction, 

 

This confirms that when is positive, is negative. The current density 𝐽𝑥 is 
 

Eliminating 𝑣𝑑  between these equations, we find 

 

Application of the Hall effect: 
(1) It is easy to measure voltage; the Hall effect is used for precision measurement of magnetic field. 

(2) The Hall voltage developed by positive carrier has opposite sign compared to negative carrier.  The Hall 

Effect is used to determine the sign of the current carrier in semiconductors. 

 

Example on A Hall-effect measurement 
You place a strip of copper, 2.0 mm thick and 1.50 cm wide, in a 

uniform 0.40-T magnetic field as shown in the figure. When you run 

a 75-A current in the x-direction, you find that the potential at the 

bottom of the slab is 0.81 𝜇𝑉 higher than at the top. From this 

measurement, determine the concentration of mobile electrons in 

copper. 

Solution: 

The current density is        𝐽𝑥 =
𝐼

𝐴
=

75

(2×10−3)(1.5×10−2)
= 2.5 × 106 𝐴/𝑚2 

The electric field is          𝐸𝑧 =
𝑉

𝑑
=

0.81×10−6

1.5×10−2
= 5.4 × 10−5 𝑉/𝑚 

Therefore, the concentration of mobile electrons in copper is 

𝑛 =
−𝐽𝑥𝐵𝑦

𝑞𝐸𝑧
=

−(2.5 × 106)(0.4)

(−1.6 × 10−19)(5.4 × 10−5)
= 11.6 × 1028𝑚−3 

 

 

𝐽𝑥 = 𝑛𝑞𝑉𝑑  
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Lecture 11. Sources of Magnetic field 
 

 The magnetic field of a moving charge 
 A moving charge produces a magnetic field.  

 The field will be perpendicular to the direction of motion of  

the charge.  

 

q: source point charge  

P: field point  
r : a unit vector=1 

v: particle velocity vector 

B: magnetic field 

 

 

 

B is perpendicular to the plane containing the 

line joining q and P and the particle’s velocity 

vector  

𝐵 =
𝜇0

4𝜋

|𝑞|𝑣𝑠𝑖𝑛𝜑

𝑟2
 

 

𝐵 =
𝜇0

4𝜋

𝑞(𝒗 × 𝒓)

𝑟2
 

 

 

 

𝜇0:   Permeability of free space      𝜇0 = 4𝜋 × 10−7   
𝑇𝑒𝑠𝑙𝑎. 𝑚𝑒𝑡𝑒𝑟 

𝐴𝑚𝑝𝑒𝑟𝑒
 

 

𝜀0:  Permittivity of free space        𝜀0 = 8.85 × 10−12  
𝐶𝑜𝑢𝑙𝑜𝑚𝑏

𝑁𝑒𝑤𝑡𝑜𝑛. 𝑚𝑒𝑡𝑒𝑟2
 

 

Speed of light                                 𝑐 =
1

√𝜇0𝜀0
= 3 × 108   𝑚𝑒𝑡𝑒𝑟/𝑠𝑒𝑐𝑜𝑛𝑑 

 

Example: Two protons move parallel to the x-axis in opposite directions at the same speed (small compared to 

the speed of light c). At the instant shown, find the electric and magnetic forces on the upper proton and 

compare their magnitudes. 
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Solution: Coulomb’s law gives the electric force on the upper proton. 

To get the magnetic force on the upper proton, we must first find the 

magnetic field that the lower proton produces at the position of the upper 

proton. The unit vector from the lower proton (the source) to the position of 

the upper proton is 𝒓 = 𝒋  

𝐹𝐸 =
1

4𝜇𝜀0

𝑞2

𝑟2
 

 

𝐵 =
𝜇0

4𝜋

𝑞𝑣𝑖 × 𝑗

𝑟2
=

𝜇0

4𝜋

𝑞𝑣

𝑟2
𝒌 

 

𝐹𝐵 = 𝑞(−𝒗) × 𝑩 = −𝑞𝑣𝒊 ×
𝜇0

4𝜋

𝑞𝑣

𝑟2
𝒌 =

𝜇0

4𝜋

𝑞2𝑣2

𝑟2
𝒋 

 

𝐹𝐵

𝐹𝐸
=

𝜇0𝑞2𝑣2/4𝜋𝑟2

𝑞2/4𝜋𝜀0𝑟2
=

𝜇0𝑣2

1/𝜀0
=

𝑣2

1/𝜇0𝜀0
=

𝑣2

𝑐2
 

 
The magnetic force is much smaller than the electric force because v is smaller than the speed of light. 

 

 Magnetic field of a current element  
 

the magnetic field caused by a short segment dl of a current-carrying 

conductor, as shown in the figure. The volume of the segment is 𝐴 𝑑𝑙, where 

A is the cross-sectional area of the conductor. If there are n moving charged 

particles per unit volume, each of charge q, the total moving charge dQ in the 

segment is 

𝑑𝑄 = 𝑛𝑞𝐴𝑑𝑙 

 

The moving charges in this segment are equivalent to a single charge dQ, 

traveling with a velocity equal to the drift velocity 𝑣𝑑. The magnitude of the 

magnetic field at the field point P is 

𝑑𝐵 =
𝜇0

4𝜋

|𝑑𝑄|𝑣𝑑𝑠𝑖𝑛𝜑

𝑟2
=

𝜇0

4𝜋

𝑛|𝑞|𝑣𝑑𝐴 𝑑𝑙 𝑠𝑖𝑛𝜑

𝑟2
 

But  𝑛|𝑞|𝑣𝑑𝐴 = 𝐼 

 

∴ 𝑑𝐵 =
𝜇0

4𝜋

𝐼 𝑑𝑙 𝑠𝑖𝑛𝜑

𝑟2
 

 

∴ 𝑑𝐵 =
𝜇0

4𝜋

𝐼 𝑑𝒍 × 𝒓

𝑟2
 

where is dl a vector with length dl, in the same direction as the current in the conductor. 
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  The last equations are called the law of  Biot and Savart 

 

 use this law to find the total magnetic field at any point in space 

due to the current in a complete circuit. 

 

 

 

 

 

Example: A copper wire carries a steady 125-A current to an 

electroplating tank (Figure). Find the magnetic field due to a 1.0-

cm segment of this wire at a point 1.2 m away from it, if the point 

is  

(a) Point straight out to the side of the segment, and  

(b) Point in the xy-plane and on a line at to the 

segment. 

 

Solution: (a) At point𝑃1, the unit vector  𝒓 = 𝒋 

𝑩 =
𝜇0

4𝜋

𝐼 𝑑𝒍 × 𝒓

𝑟2
=

𝜇0

4𝜋

𝐼𝑑𝑙(−𝒊) × 𝒋

𝑟2
=

𝜇0

4𝜋

𝐼𝑑𝑙

𝑟2
𝒌 

 

                                            = −(10−7)
(124)(1×10−2)

(1.2)2 𝒌 = −(8.7 × 10−8 𝑇)𝒌 

∴ The direction of B at 𝑃1 is into the xy-plane 

                 (b) At 𝑃2 the unit vector is 𝒓 = (−𝑐𝑜𝑠300)𝒊 + (𝑠𝑖𝑛300)𝒋 

𝐵 =
𝜇

0

4𝜋

𝐼 𝑑𝒍 × 𝒓

𝑟2
=

𝜇
0

4𝜋

𝐼 𝑑𝑙(−𝑖) ×= (−𝑐𝑜𝑠300)𝒊 + (𝑠𝑖𝑛300)𝒋 

𝑟2
 

=
𝜇0

4𝜋

𝐼 𝑑𝑙𝑠𝑖𝑛30

𝑟2
𝒌 = −(10−7)

(125)(1 × 10−2)(𝑠𝑖𝑛30)

(1.2)2
= −(4.3 × 10−8 𝑇)𝒌 

∴ The direction of B at 𝑃2 is also into the xy-plane 

 

 Magnetic field of a straight current-carrying conductor 
Use the law of Biot and Savart to find the magnetic field produced by a straight current-carrying conductor. 

The figure shows such a conductor with length 2a carrying a current I. We will find at a 

point a distance x from the conductor on its perpendicular bisector.  

 

To find the field dB for the element dl at point P distance x from it.  

 𝑑𝑙 = 𝑑𝑦 

  𝑟 = √𝑥2 + 𝑦2 

 𝑠𝑖𝑛𝜑 = 𝑠𝑖𝑛(𝜋 − 𝜑) =
𝑥

√𝑥2+𝑦2
 

  from RHR the direction of dB is into the plane of the figure. 
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The magnitude of the total magnetic field B is 

𝐵 =
𝜇0𝐼

4𝜋

𝑑𝑙 sin 𝜑

𝑟2
=

𝜇0𝐼

4𝜋
∫

𝑥𝑑𝑦

(𝑥2 + 𝑦2)3/2

𝑎

−𝑎

=
𝜇0𝐼

4𝜋

2𝑎

𝑥√𝑥2 + 𝑎2
 

 

=
𝜇0𝐼

2𝜋

1

𝑥√𝑥2

𝑎2 + 1

 

 

 When the length 2a of the conductor is very great in comparison to its distance 𝑥 from the point P , 

we can consider it to be infinitely long.  

 When a is much larger than 𝑥, √
𝑥2

𝑎2 + 1  is approximately equal to 1 

  Hence, in the limit 𝑎 → ∞  

𝐵 =
𝜇0𝐼

2𝜋𝑥
 

The physical situation has axial symmetry about the y-axis. Hence must 

have the same magnitude at all points on a circle centered on the 

conductor and lying in a plane perpendicular to it, and the direction of 

must be everywhere tangent to such a circle. Thus, at all points on a 

circle of radius r around the conductor, the magnitude B is 

 

 

𝐵 =
𝜇0𝐼

2𝜋𝑟
 

 

 

Example: A long, straight conductor carries a 1.0-A current. At what 

distance from the axis of the conductor does the resulting magnetic field 

have magnitude 𝐵 = 0.5 × 10−4 𝑇 (about that of the earth’s magnetic field in Pittsburgh)?  

 

Solution: 

𝐵 =
𝜇0𝐼

2𝜋𝑟
 

 

∴ 𝑟 =
𝜇0𝐼

2𝜋𝐵
=

(4𝜋 × 10−7)(1)

2𝜋(0.5 × 10−4)
 

= 4 × 10−3𝑚 = 4 𝑚𝑚 

 

 

 

 

 

 



72 

2المادة:  الفيزياء                                                                          المرحلة الاولى                
 د. وسام عبدالله لطيف

 Force between parallel conductors 
The figure shows segments of two long, straight, parallel conductors 

separated by a distance r and carrying currents 𝐼 and 𝐼’ in the same 

direction. Each conductor lies in the magnetic field set up by the 

other, so each experiences a force. The figure shows some of the 

field lines set up by the current in the lower conductor.  

The lower conductor produces a B field that, at the position of the 

upper conductor, has magnitude 

𝐵 =
𝜇0𝐼

2𝜋𝑟
 

 

 

 

he force that this field exerts on a length L of the upper conductor is 𝑭 = 𝐼′𝑳 × 𝑩 where the vector L is in the 

direction of the current 𝐼’ and has magnitude L. Since B is perpendicular to the length of the conductor and 

hence to L the magnitude of this force is 

𝐹 = 𝐼′𝐿𝐵 =
𝜇0𝐼𝐼′𝐿

2𝜋𝑟
 

and the force per unit length F/L is 

 
Applying the right-hand rule to 𝑭 = 𝐼′𝑳 × 𝑩 shows that the force on the upper 

conductor is directed downward. 

The current in the upper conductor also sets up a field at the position of the 

lower one. 

Thus two parallel conductors carrying current in the same direction attract 

each other. If the direction of either current is reversed, the forces also reverse. 

Parallel conductors carrying currents in opposite directions repel each other. 

 

 

Example: Two straight, parallel, superconducting wires 4.5 𝑚𝑚 apart carry 

equal currents of 15,000 𝐴 in opposite directions. What force, per unit length, does each wire exert on the 

other? 
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Solution: The conductors repel each other because the currents are in opposite 

directions.  

The force per unit length is 

 

𝐹

𝐿
=

𝜇0𝐼𝐼′

2𝜋𝑟
=

(4𝜋 × 10−7)(15 × 103)2

2𝜋(4.5 × 10−3)
 

                                                        = 1 × 104 𝑁/𝑚 

 

 Magnetic field of a circular current loop 
 

Use the law of Biot and Savart to find the magnetic field at a point P on the axis of the loop, at a distance x from 

the center. As the figure shows, dl and r are perpendicular, and the direction of the field dB caused by this 

particular element lies in the xy-plane. Since 𝑟2 = 𝑥2 + 𝑎2 the magnitude dB of the field due to element dl is 

 

𝑑𝑩 =
𝜇0𝐼

4𝜋

𝑑𝑙

(𝑥2 + 𝑎2)
 

 

The components of the vector dB are 

𝑑𝐵𝑥 = 𝑑𝐵𝑐𝑜𝑠𝜃 =
𝜇0𝐼

4𝜋

𝑑𝑙

(𝑥2 + 𝑎2)

𝑎

(𝑥2 + 𝑎2)1/2
 

𝑑𝐵𝑥 = 𝑑𝐵𝑠𝑖𝑛𝜃 =
𝜇0𝐼

4𝜋

𝑑𝑙

(𝑥2 + 𝑎2)

𝑥

(𝑥2 + 𝑎2)1/2
 

The total field B at P has only an x-component (it is perpendicular to the plane of the loop). 

To obtain the x-component of the total field we integrate around the loop. Everything in this expression except 

dl is constant and can be taken outside the integral, and we have 

𝐵𝑥 = ∫
𝜇0𝐼

4𝜋

𝑎 𝑑𝑙 

(𝑥2 + 𝑎2)3/2
=

𝜇0𝐼

4𝜋

𝑎  

(𝑥2 + 𝑎2)3/2
∫ 𝑑𝑙 

The integral of 𝑑𝑙 is just the circumference of the circle, ∫ 𝑑𝑙 = 2𝜋𝑎  and we finally get 

 
The direction of the magnetic field on the axis of a 

current-carrying loop is given by a right-hand rule. 

If you curl the fingers of your right hand around the 

loop in the direction of the current, your right thumb 

points in the direction of the field. 
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 Magnetic Field on the Axis of a Coil 
Now suppose that instead of the single loop,  we have a coil consisting of N loops, all with the same radius. 

Then the total field is N times the field of a single loop: 

 
The maximum value of the field is at the center of the loop or 

coil at 𝑥 = 0 

𝐵𝑚𝑎𝑥 =
𝜇0𝑁𝐼

2𝑎
 

 

 

 

 

 

 

 
Example: A coil consisting of 100 circular loops with radius 0.60 m carries a 5.0-A current.  

(a) Find the magnetic field at a point along the axis of the coil, 0.80 m from the center.  

(b) Along the axis, at what distance from the center of the coil is the field magnitude 
1

8
 as great as it 

is at the center?  

Solution:  

 

 
 

(a) At 𝑥 = 0.8 𝑚 from the center 

𝐵𝑥 =
(4𝜋 × 10−7)(100)(5)(0.6)2

2(0.82 + 0.62)3/2
= 1.1 × 10−4 𝑇 

(b) we want to find a value of x such that 

1

(𝑥2 + 𝑎2)3/2
=

1

8

1

(02 + 𝑎2)3/2
 

(𝑥2 + 𝑎2)2/3 = 8(𝑎2)2/3
 

𝑥2 + 𝑎2 = 4𝑎2 

∴ 𝑥 = ±√3   𝑎 = 1.04 m 
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 Ampere's law  

 Ampère's Circuital Law relates the magnetic field to its electric current source. 

 Ampere's law allows us to calculate magnetic fields from the relation between the electric currents that 

generate this magnetic fields. It states that for a closed path the sum over elements of the component of the 

magnetic field is equal to electric current multiplied by the permeability of free space. 

 It is the law that a magnetic field induced by an electric current is, at any point, 

directly proportional to the product of the current and the length of the current 

conductor, inversely proportional to the square of the distance between the point 

and the conductor, and perpendicular to the plane joining the point and the 

conductor.  
 Ampere’s law is formulated not in terms of magnetic flux, but rather in terms of the line integral of around a 

closed path, denoted by 

∮ 𝐵 ∙ 𝑑𝑙 = 𝜇0𝐼 

Example: A cylindrical conductor with radius R carries a current I. The current is uniformly distributed over the 

cross-sectional area of the conductor. Find the magnetic field as a function of the distance r from the conductor 

axis for points both inside and outside the conductor. 

 

Solution: In either case the field B has the same magnitude at every 

point on the circular integration path and is tangent to the path. Thus the 

magnitude of the line integral is simply B(2𝜋𝑟). To find the current 

𝐼𝑒𝑛𝑐𝑙 enclosed by a circular integration path inside the conductor 

(𝑟 < 𝑅), note that the current density (current per unit area) is, 

 
 

 

 

so the 𝐼𝑒𝑛𝑐𝑙 = 𝐽(𝜋𝑟2) = 𝐼𝑟2/𝑅2  
Hence Ampere’s law gives 

𝐵(2𝜋𝑟) = 𝜇0𝐼𝑟2/𝑅2 

 The field inside the conductor  𝑟 < 𝑅 

∴ 𝐵 =
𝜇0𝐼

2𝜋

𝑟

𝑅2
 

Outside the conductor the integration encloses 

the total current in the conductor, so 𝐼𝑒𝑛𝑐𝑙 = 𝐼 

 The field outside the conductor  𝑟 > 𝑅 

∴ 𝐵 =
𝜇0𝐼

2𝜋𝑟
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Lecture 12. Electromagnetic induction 
 
 Electromagnetic induction is the process of using magnetic fields to produce voltage, and in a 

complete circuit, a current.  
 The current in the coil induced by a changing magnetic field or changing the area of a coil methods is 

called an induced current. A closed circuit is necessary for the induced current to flow. 

 The emf produced in the coil which drives the induced current is called the "induced emf". The induced 

emf exists whether or not the coil is part of a closed circuit. 

 The phenomenon of producing an induced emf with the aid of a magnetic field is called electromagnetic 

induction. 

 Simple experiments show that it 
doesn’t matter how the magnetic field 
changes: Induced electrical effects 
occur in all cases of changing 
magnetic fields. 

 

 

 

 Experiment 2: moving circuit/coil near a magnet; an induced 

current results 

 

 Experiments 3 and 4: two circuits; either one moving 

• (3) Energize one coil to make it an electromagnet; move it near a 
circuit and induced current results. 

• (4) Energize one coil to make it an electromagnet; hold it stationary 
and move a circuit near it—an induced current results. 

 

 Experiment 5: changing field/current; no motion 

            Change the current in one circuit, and thus the magnetic field it 

produces; induced current results in a nearby circuit 

 

 Magnetic Flux 

To understand the complex nature of electromagnetic induction is to understand the idea of magnetic flux. 

Flux is a general term associated with a FIELD that is bound by a certain AREA. So MAGNETIC FLUX is any 

AREA that has a MAGNETIC FIELD passing through it. 
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We generally define an AREA vector as one that is perpendicular to the surface of the material. Therefore, you 

can see in the figure that the AREA vector and the Magnetic Field vector are PARALLEL. This then produces a 

DOT PRODUCT between the 2 variables that then define flux. 

 

If B is uniform over a flat area A:  

 
 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

  
 

 Faraday’s Law of Induction:  

The induced emf in a closed loop equals the negative of the time rate of change of the magnetic flux through the 

loop.                                                                      

 𝜀 = −
𝑑𝜙𝐵

𝑑𝑡
                  Increasing flux                   𝜀 < 0   

                                         Decreasing flux                   𝜀 > 0 

 

Example1: The magnetic field between the poles of the electromagnet in Fig. 29.5 is uniform at any time, but 

its magnitude is increasing at the rate of The area of the conducting loop in the field is 120 cm2, and the total 

circuit resistance, including the 0.020 T/s. meter, is  

(a) Find the induced emf and the induced current in the circuit.  

(b) If the loop is replaced by one made of an insulator, what effect does this have on the induced emf 

and induced current? 
 

Solution:  

(a)The area vector A for the loop is perpendicular to the plane of the 

loop; we take A to be vertically upward. Then A and B are parallel, 

and because B is uniform the magnetic flux through the loop is  

     𝝓𝑩 = 𝑩 ∙ 𝑨 = 𝐵𝐴𝑐𝑜𝑠0 = 𝐵𝐴. The area 𝑨 = 0.012 𝑚2 is 

constant,    so the rate of change of magnetic flux is .  

𝑑𝝓𝑩

𝑑𝑡
=

𝑑(𝐵𝐴)

𝑑𝑡
=

𝑑𝐵

𝑑𝑡
𝐴 = 0.02 × 0.012 = 2.4 × 10−4𝑉 

This, apart from a sign that we haven’t discussed yet, is the induced 

emf  𝜀 . The corresponding induced current is 

𝐼 =
𝜀

𝑅
=

2.4 × 10−4

5
= 4.8 × 10−5𝐴 
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(b) By changing to an insulating loop, we’ve made the resistance of the loop very high. Faraday’s law does not 

involve the resistance of the circuit in any way, so the induced emf does not change. But the current will be 

smaller. If the loop is made of a perfect insulator with infinite resistance, the induced current is zero. This 

situation is analogous to an isolated battery whose terminals aren’t connected to anything: 

                                           An emf is present, but no current flows. 

 Direction of Induced emf: 

We can find the direction of an induced emf or current by using the Faraday’s law of induction 𝜀 = −
𝑑𝜙𝐵

𝑑𝑡
, 

together with some simple sign rules. Here’s the procedure: 

1. Define a positive direction for the vector area A. 

                  2. From the directions of A and the magnetic field B determine the sign of the magnetic flux 𝝓𝑩 and 

its rate of change 𝑑𝝓𝑩 𝑑𝑡⁄   

              3. Determine the sign of the induced emf or current. 

If the flux is increasing, so 𝑑𝝓𝑩 𝑑𝑡⁄  is positive, then the induced 

emf or current is negative; if the flux is decreasing, 𝑑𝝓𝑩 𝑑𝑡⁄  is 

negative and the induced emf or current is positive. 

                 4. Finally, determine the direction of the induced emf 

or current using your right hand. Curl the fingers of your right 

hand around the A vector, with your right thumb in the direction 

of A. If the induced emf or current in the circuit is positive, it is 

in the same direction as your curled fingers; if the induced emf or 

current is negative, it is in the opposite direction. 
 

For a coil with N identical turns, and if the flux varies at the same rate through each turn, the total rate of 

change through all the turns is N times that for a single turn. If  𝝓𝑩 is the flux through each turn, the total emf in 

a coil with N turns is     𝜀 = −𝑁
𝑑𝜙𝐵

𝑑𝑡
 

 

Example 2: A 500-loop circular wire coil with radius 4 cm is placed between the poles of a large electromagnet. 

The magnetic field is uniform and makes an angle of 600with the plane of the coil; it decreases at 0.2 𝑇/𝑠.  

What are the magnitude and direction of the induced emf? 

Solution: The flux varies because the magnetic field decreases in amplitude. We choose the area vector A to be 

in the direction shown in the figure below. With this choice, the geometry is similar to (b) of  the direction 

figure above. Since the magnetic field is uniform, then the magnetic flux is   

𝝓𝑩 = 𝐵𝐴 𝑐𝑜𝑠𝜑 

Where 𝜑 = 300. 

(Remember that 𝜑 is the angle between 𝑨 and 𝑩 not the angle between 𝑩 and the plane of the loop.)  
 

 

Therefore, the induced emf in the coil 

𝜀 = −𝑁
𝑑𝜙𝐵

𝑑𝑡
= −𝑁

𝑑𝐵

𝑑𝑡
 𝐴𝑐𝑜𝑠𝜑 

= 500(−0.2)(𝜋 0.042)(𝑐𝑜𝑠30) = 0.435 𝑉 
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The positive answer means that when you point your right thumb in the direction of the area vector 𝑨 ( below 

the magnetic field), the positive direction for 𝜀 is in the direction of the curled fingers of your right hand. 

 Lenz’s Law 

The direction of any magnetic induction effect is such as to oppose the cause of the effect. 

 Alternative method for determining the direction of induced current or emf.  

 The “cause” can be changing the flux through a stationary circuit due to varying B, changing flux 
due to motion of conductors, or both. 

 
If the flux in an stationary circuit changes, the induced current sets up a magnetic field opposite to the original 

field if original B increases, but in the same direction as original B if B decreases.  

 The induced current opposes the change in the flux through a circuit (not the flux itself). 

 If the change in flux is due to the motion of a conductor, the direction of the induced current in the 

moving conductor is such that the direction of the magnetic force on the conductor is opposite in 

direction to its motion (e.g. slide-wire generator). The induced current tries to preserve the “status 

quo” by opposing motion or a change of flux. 

B induced downward opposing the change in flux (𝑑Φ/𝑑𝑡). This leads to induced 

current clockwise.  

 
 
 

 Lenz’s Law and the Response to Flux Changes 

 Lenz’s Law gives only the direction of an induced current I. The 

magnitude depends on the circuit’s resistance. Large R          small 

induced I          easier to change flux through circuit.  

 If loop is a good conductor           I induced present as long as magnet moves with respect to loop. 

When relative motion stops          I = 0 quickly (due to circuit’s resistance). 

 If R = 0 (superconductor)           I induced (persistent current) flows even after induced emf has 

disappeared (after magnet stopped moving relative to loop). The flux through loop is the same as 

before the magnet started to move           flux through loop of 𝑅 = 0 does not change.  

 Motional Electromotive Force 

A charged particle in rod experiences a magnetic force  𝑭 = 𝑞𝒗 × 𝑩 that causes 

free charges in rod to move, creating excess charges at opposite ends.  

 The excess charges generate an electric field (from a to b) and electric 

force (𝐹 =  𝑞 𝐸) opposite to magnetic force.  

 Charge continues accumulating until 𝐹𝐸 compensates 𝐹𝐵 and charges 

are in equilibrium             𝑞 𝐸 =  𝑞 𝑣 𝐵 

 the magnitude of the potential difference 𝑉𝑎𝑏 = 𝑉𝑎 − 𝑉𝑏is equal to the 
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electric field magnitude E multiplied by the length L of the rod. 

    𝑉𝑎𝑏 = 𝐸𝐿 = 𝑣𝐵𝐿 

 If rod slides along stationary U-shaped conductor forming a complete circuit. No magnetic force 

acts on charges in U-shaped conductor, but excess charge at ends of straight rod redistributes along 

U-conductor, creating an electric field. 

The electric field in stationary U-shaped conductor creates a current 

moving rod became a source of emf (motional electromotive force). Within straight rod charges move from 

lower to higher potential, and in the rest of circuit from higher to lower potential. 

 
 

𝜀 = 𝑣𝐵𝐿 
Length of rod and velocity perpendicular to B. 
 

Induced current: 

𝐼 =
𝜀

𝑅
=

𝑣𝐵𝐿 

𝑅
 

 

 
 
 
 
 
 

  The emf associated with the moving rod is equivalent to that of a battery with positive terminal at a 

and negative at b.  

 Motional emf: general form (alternative expression of Faraday’s law) 

𝑑𝜀 = (𝑣 × 𝐵) ∙ 𝑑𝑙 

                                                     𝜀 = ∮(𝑣 × 𝐵) ∙ 𝑑𝑙           Closed conducting loop 
 

 This expression can only be used for problems involving moving conductors. When we have 

stationary conductors in changing magnetic fields, we need to use:  𝜀 = − 𝑑𝜙𝐵 𝑑𝑡⁄  

Example: Suppose the moving rod in the figure below is 0.10 𝑚 long, the velocity is 𝑣 = 2.5 𝑚/𝑠, the total 

resistance of the loop is 𝑅 = 0.03 𝛺 and B is 0.60 𝑇. Find the motional emf, the induced current, and the force 

acting on the rod. 

Solution: the motional emf is 

𝜀 = 𝑣𝐵𝐿 = 2.5 × 0.6 × 0.1 = 0.15 𝑉 

The induced current in the loop is 

𝐼 =
𝜀

𝑅
=

0.15

0.03
= 5 𝐴 

the magnetic force acting on the rod has magnitude 

𝐹 = 𝐼𝐿𝐵 = 5 × 0.1 × 0.6 = 0.3 𝑁 

Since L and B are perpendicular, the magnetic force 𝑭 = 𝐼𝑳 × 𝑩, by the 

RHR is directed opposite to the rod ‘s motion.  

 Induced Electric Fields 

 An induced emf occurs when there is a changing magnetic flux through a stationary conductor. 

 A current (I) in solenoid sets up B along its axis, the 

magnetic flux is: 

 

Induced current in loop (I’): 

𝐼′ =
𝜀

𝑅
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 The force that makes the charges move around the loop is not a magnetic force. There is an 

induced electric field in the conductor caused by a changing magnetic flux. 

 The total work done on q by the induced E when it goes once around the loop: = 𝑞𝜀 , therefore E 

is not conservative. 

 For conservative E:    ∮ 𝑬 ∙ 𝑑𝒍 = 𝟎 

 For non-conservative E:    ∮ 𝑬 ∙ 𝑑𝒍 = 𝜺 = −
𝑑𝛷𝐵

𝑑𝑡
   (stationary  path)    

 Cylindrical symmetry        E magnitude constant, direction is tangent 

to loop. 

 
 

  

Example: Suppose a long solenoid  has 500 turns per meter and cross-sectional area 4𝑐𝑚2. The current in its 

windings is increasing at 100 𝐴/𝑠 

(a) Find the magnitude of the induced emf in the wire loop outside the solenoid.  

(b) Find the magnitude of the induced electric field within the loop if its radius is 2.0 cm. 

Solution: (a) the induced emf is 

𝜀 = −
𝑑𝛷𝐵

𝑑𝑡
= −𝜇0𝑛𝐴

𝑑𝐼

𝑑𝑡
 

  = −(4𝜋 × 10−7)(500)(4 × 10−4)(100) 

  = −25 × 10−6𝑊𝑏/𝑠 

  = −25 × 10−6𝑉 = −25𝜇𝑉  

(b) By symmetry the line integral ∮ 𝑬 ∙ 𝑑𝒍 has absolute value 2𝜋𝑟𝐸 no matter which direction we integrate 

around the loop. This is equal to the absolute value of the emf, so 

|𝜀| = 2𝜋𝑟𝐸  

𝐸 =
|𝜀|

2𝜋𝑟
=

25 × 10−6

2𝜋(2 × 10−2)
= 2 × 10−4𝑉/𝑚 

 Displacement Current and Maxwell’s Equations 

 A varying electric field gives rise to a magnetic field. the magnetic field can be obtained by using 

Ampere's law 

∮ 𝑩 ∙ 𝑑𝒍 = 𝜇𝟎𝐼𝒆𝒏𝒄𝒍 

Where  𝐼𝒆𝒏𝒄𝒍 is the conduction current passing through surface by closed path. 

 Consider charging a capacitor: Conducting wires carry 𝑖𝑐 

(conduction current) into one plate and out of the other, as Q and E 

between plates increase. for the circular path shown apply 

Ampere’s law to find 

∮ 𝑩 ∙ 𝑑𝒍 = 𝜇𝟎𝑖𝒄 

Consider a second surface that bulges out to the right which is also bounded by the same circle, the current 

through that surface is zero, because the charge stops on the capacitor plates. So ∮ 𝑩 ∙ 𝑑𝒍 = 𝜇𝟎𝑖𝒄   and at the 

same time it is  equal to zero! This is a clear contradiction. 

 As capacitor charges, E and 𝛷𝐸 through surface increase. 
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 The instantaneous charge on the plates is  𝑞 = 𝐶𝑣 , where v is the instantaneous potential 

difference across the plates. 

𝐶 = 𝜀0
𝐴

𝑑
   and    𝑣 = 𝐸𝑑  so 

𝑞 = 𝐶𝑣 = 𝜀0
𝐴

𝑑
(𝐸𝑑) = 𝜀0𝐸𝐴 = 𝜀0𝛷𝐸 

𝑖𝑐 =
𝑑𝑞

𝑑𝑡
= 𝜀0

𝑑𝛷𝐸

𝑑𝑡
 

we invent a fictitious displacement current in the region between the plates, defined 

as 

𝑖𝐷 = 𝜀0

𝑑𝛷𝐸

𝑑𝑡
 

To generalize Ampere’s law, we include this fictitious current, along with the real 

conduction current 

∮ 𝑩 ∙ 𝑑𝒍 = 𝜇𝟎(𝑖𝒄 + 𝒊𝑫)𝒆𝒏𝒄𝒍 

Ampere’s law in this form is obeyed no matter which surface we use. For the flat surface, 𝑖𝐷 is zero; for the 

curved surface, 𝑖𝐶  is zero; and 

𝑖𝐶(𝑓𝑙𝑎𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒) = 𝑖𝐷(𝑐𝑢𝑟𝑣𝑒𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒) 
 

 Displacement current density (𝒋𝑫): 

𝑗𝐷 =
𝑖𝐷

𝐴
= 𝜀

𝑑𝐸

𝑑𝑡
 

 The displacement current is the source of B in between capacitor’s plates. It helps us to satisfy 

Kirchhoff's junction’s rule: 𝑖𝐶 in and 𝑖𝐷 out 

 

 The reality of Displacement Current 

Displacement current creates B between plates of capacitor while it charges. 

Let’s picture round capacitor plates with radius R. To find the magnetic field at a 

point in the region between the plates at a distance r from the axis, we apply 

Ampere’s law to a circle of radius r passing through the point, with 𝑟 < 𝑅 

This circle passes through points a and b.  

The total current enclosed by the circle is 𝑗𝐷 times its area, or (𝑖𝐷 𝜋𝑅2)(𝜋𝑟2)⁄ . The 

integral in Ampere’s law is just B times the circumference 2𝜋𝑟 of the circle, and 

because for the charging capacitor, Ampere’s law becomes 

∮ 𝐵 ∙ 𝑑𝑙 = 2𝜋𝑟𝐵 = 𝜇0

𝑟2

𝑅2
𝑖𝐶  

𝐵 =
𝜇0

2𝜋

𝑟

𝑅2
𝑖𝐶 

 

This result predicts that in the region between the plates B is zero at the axis and increases linearly with distance 

from the axis. A similar calculation shows that outside the region between the plates (that is, for 𝑟 > 𝑅 ) B is the 

same as though the wire were continuous and the plates not present at all. 
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 Maxwell’s Equations of Electromagnetism 

 

 Gauss’s law for electricity    ∮ 𝐸 ∙ 𝑑𝐴 =
𝑄𝑒𝑛𝑐𝑙

𝜀0
    it describes charges and electric field. 

It physically means that 

• like charges repel and unlike charges attract,  

• A charge on an insulated conductor moves to its outer surface. 

 

 Gauss’s law for magnetism  ∮ 𝐵 ∙ 𝑑𝐴 = 0  it describes the magnetic field. 

It physically means that  

• There are no magnetic monopoles 

 

 Ampere’s law (as extended by Maxwell)   ∮ 𝐵 ∙ 𝑑𝑙 = 𝜇0 (𝑖𝑐 + 𝜀0
𝑑𝛷𝐸

𝑑𝑡
)

𝑒𝑛𝑐𝑙
   it describes 

the magnetic effect of a current or a changing electric field. 

It physically means that 

• A current in a wire sets up a magnetic field near the wire. 

• The speed of light can be calculated from purely electromagnetic measurements. 

 

 Faraday’s law of induction   ∮ 𝐸 ∙ 𝑑𝑙 = −
𝑑𝛷𝐸

𝑑𝑡
  it describes the electrical effect of changing 

magnetic field. 

It physically means that 

• A bar magnet thrust through a closed loop of wire will set up a current in the loop. 

  

 

 

 

 


